Extension of point-finite partitions of unity
Fundamenta Mathematicae, Tome 191 (2006) no. 3, pp. 187-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A subspace $A$ of a topological space $X$ is said to be $P^\gamma$-embedded
($P^\gamma$(point-finite)-embedded) in $X$ if every (point-finite) partition of unity
$\alpha$ on $A$ with $|\alpha|\leq\gamma$ extends to a (point-finite)
partition of unity on $X$.
The main results are:
(Theorem A)
A subspace $A$ of $X$ is $P^\gamma({\rm point-finite})$-embedded in $X$ iff it is $P^\gamma$-embedded and
every countable intersection $B$ of cozero-sets in $X$ with
$B\cap A=\emptyset$ can be separated from $A$ by a cozero-set in $X$.
(Theorem B)
The product $A\times[0,1]$ is $P^\gamma({\rm point-finite})$-embedded in $X\times[0,1]$ iff
$A\times Y$ is $P^\gamma({\rm point-finite})$-embedded in $X\times Y$ for every compact Hausdorff space
$Y$ with $w(Y)\leq\gamma$ iff
$A$ is $P^\gamma$-embedded in $X$ and every subset $B$ of $X$ obtained from
zero-sets by means of the Suslin operation, with $B\cap A=\emptyset$,
can be separated from $A$ by a cozero-set in $X$.
These characterizations are used to answer certain questions of Dydak.
In particular, it is shown that, assuming CH, the property of $A\times[0,1]$
to be $P^\gamma({\rm point-finite})$-embedded in $X\times[0,1]$ is stronger than that of $A$
being $P^\gamma({\rm point-finite})$-embedded in $X$.
Keywords:
subspace topological space said gamma embedded gamma point finite embedded every point finite partition unity alpha alpha leq gamma extends point finite partition unity main results theorem nbsp subspace gamma point finite embedded gamma embedded every countable intersection cozero sets cap emptyset separated cozero set nbsp theorem nbsp product times gamma point finite embedded times times gamma point finite embedded times every compact hausdorff space leq gamma gamma embedded every subset obtained zero sets means suslin operation cap emptyset separated cozero set nbsp these characterizations answer certain questions dydak particular shown assuming property times gamma point finite embedded times stronger being gamma point finite embedded nbsp
Affiliations des auteurs :
Haruto Ohta 1 ; Kaori Yamazaki 2
@article{10_4064_fm191_3_1,
author = {Haruto Ohta and Kaori Yamazaki},
title = {Extension of point-finite partitions of unity},
journal = {Fundamenta Mathematicae},
pages = {187--199},
publisher = {mathdoc},
volume = {191},
number = {3},
year = {2006},
doi = {10.4064/fm191-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-1/}
}
TY - JOUR AU - Haruto Ohta AU - Kaori Yamazaki TI - Extension of point-finite partitions of unity JO - Fundamenta Mathematicae PY - 2006 SP - 187 EP - 199 VL - 191 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-1/ DO - 10.4064/fm191-3-1 LA - en ID - 10_4064_fm191_3_1 ER -
Haruto Ohta; Kaori Yamazaki. Extension of point-finite partitions of unity. Fundamenta Mathematicae, Tome 191 (2006) no. 3, pp. 187-199. doi: 10.4064/fm191-3-1
Cité par Sources :