Extension of point-finite partitions of unity
Fundamenta Mathematicae, Tome 191 (2006) no. 3, pp. 187-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A subspace $A$ of a topological space $X$ is said to be $P^\gamma$-embedded ($P^\gamma$(point-finite)-embedded) in $X$ if every (point-finite) partition of unity $\alpha$ on $A$ with $|\alpha|\leq\gamma$ extends to a (point-finite) partition of unity on $X$. The main results are: (Theorem A) A subspace $A$ of $X$ is $P^\gamma({\rm point-finite})$-embedded in $X$ iff it is $P^\gamma$-embedded and every countable intersection $B$ of cozero-sets in $X$ with $B\cap A=\emptyset$ can be separated from $A$ by a cozero-set in $X$. (Theorem B) The product $A\times[0,1]$ is $P^\gamma({\rm point-finite})$-embedded in $X\times[0,1]$ iff $A\times Y$ is $P^\gamma({\rm point-finite})$-embedded in $X\times Y$ for every compact Hausdorff space $Y$ with $w(Y)\leq\gamma$ iff $A$ is $P^\gamma$-embedded in $X$ and every subset $B$ of $X$ obtained from zero-sets by means of the Suslin operation, with $B\cap A=\emptyset$, can be separated from $A$ by a cozero-set in $X$. These characterizations are used to answer certain questions of Dydak. In particular, it is shown that, assuming CH, the property of $A\times[0,1]$ to be $P^\gamma({\rm point-finite})$-embedded in $X\times[0,1]$ is stronger than that of $A$ being $P^\gamma({\rm point-finite})$-embedded in $X$.
DOI : 10.4064/fm191-3-1
Keywords: subspace topological space said gamma embedded gamma point finite embedded every point finite partition unity alpha alpha leq gamma extends point finite partition unity main results theorem nbsp subspace gamma point finite embedded gamma embedded every countable intersection cozero sets cap emptyset separated cozero set nbsp theorem nbsp product times gamma point finite embedded times times gamma point finite embedded times every compact hausdorff space leq gamma gamma embedded every subset obtained zero sets means suslin operation cap emptyset separated cozero set nbsp these characterizations answer certain questions dydak particular shown assuming property times gamma point finite embedded times stronger being gamma point finite embedded nbsp

Haruto Ohta 1 ; Kaori Yamazaki 2

1 Faculty of Education Shizuoka University Ohya, Shizuoka 422-8529, Japan
2 Institute of Mathematics University of Tsukuba Ibaraki 305-8571, Japan
@article{10_4064_fm191_3_1,
     author = {Haruto Ohta and Kaori Yamazaki},
     title = {Extension of point-finite partitions of unity},
     journal = {Fundamenta Mathematicae},
     pages = {187--199},
     publisher = {mathdoc},
     volume = {191},
     number = {3},
     year = {2006},
     doi = {10.4064/fm191-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-1/}
}
TY  - JOUR
AU  - Haruto Ohta
AU  - Kaori Yamazaki
TI  - Extension of point-finite partitions of unity
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 187
EP  - 199
VL  - 191
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-1/
DO  - 10.4064/fm191-3-1
LA  - en
ID  - 10_4064_fm191_3_1
ER  - 
%0 Journal Article
%A Haruto Ohta
%A Kaori Yamazaki
%T Extension of point-finite partitions of unity
%J Fundamenta Mathematicae
%D 2006
%P 187-199
%V 191
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-1/
%R 10.4064/fm191-3-1
%G en
%F 10_4064_fm191_3_1
Haruto Ohta; Kaori Yamazaki. Extension of point-finite partitions of unity. Fundamenta Mathematicae, Tome 191 (2006) no. 3, pp. 187-199. doi : 10.4064/fm191-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm191-3-1/

Cité par Sources :