Quasi-bounded trees and analytic inductions
Fundamenta Mathematicae, Tome 191 (2006) no. 2, pp. 175-185.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A tree $T$ on $\omega $ is said to be cofinal if for every $\alpha \in \omega ^\omega $ there is some branch $\beta $ of $T$ such that $\alpha \leq \beta $, and quasi-bounded otherwise. We prove that the set of quasi-bounded trees is a complete ${\bf\Sigma }^1_1$-inductive set. In particular, it is neither analytic nor co-analytic.
DOI : 10.4064/fm191-2-4
Keywords: tree omega said cofinal every alpha omega omega there branch beta alpha leq beta quasi bounded otherwise prove set quasi bounded trees complete sigma inductive set particular neither analytic nor co analytic

Jean Saint Raymond 1

1 Analyse Fonctionnelle Institut de Mathématique de Jussieu Boîte 186 4, place Jussieu 75252 Paris Cedex 05, France
@article{10_4064_fm191_2_4,
     author = {Jean Saint Raymond},
     title = {Quasi-bounded trees and analytic inductions},
     journal = {Fundamenta Mathematicae},
     pages = {175--185},
     publisher = {mathdoc},
     volume = {191},
     number = {2},
     year = {2006},
     doi = {10.4064/fm191-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-2-4/}
}
TY  - JOUR
AU  - Jean Saint Raymond
TI  - Quasi-bounded trees and analytic inductions
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 175
EP  - 185
VL  - 191
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm191-2-4/
DO  - 10.4064/fm191-2-4
LA  - en
ID  - 10_4064_fm191_2_4
ER  - 
%0 Journal Article
%A Jean Saint Raymond
%T Quasi-bounded trees and analytic inductions
%J Fundamenta Mathematicae
%D 2006
%P 175-185
%V 191
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm191-2-4/
%R 10.4064/fm191-2-4
%G en
%F 10_4064_fm191_2_4
Jean Saint Raymond. Quasi-bounded trees and analytic inductions. Fundamenta Mathematicae, Tome 191 (2006) no. 2, pp. 175-185. doi : 10.4064/fm191-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm191-2-4/

Cité par Sources :