How many normal measures can $\aleph_{\omega + 1}$ carry?
Fundamenta Mathematicae, Tome 191 (2006) no. 1, pp. 57-66.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that assuming the consistency of a supercompact cardinal with a measurable cardinal above it, it is possible for ${\aleph_{\omega + 1}}$ to be measurable and to carry exactly $\tau$ normal measures, where $\tau \ge \aleph_{\omega + 2}$ is any regular cardinal. This contrasts with the fact that assuming AD + DC, ${\aleph_{\omega + 1}}$ is measurable and carries exactly three normal measures. Our proof uses the methods of \cite{AM}, along with a folklore technique and a new method due to James Cummings.
DOI : 10.4064/fm191-1-4
Keywords: assuming consistency supercompact cardinal measurable cardinal above possible aleph omega measurable carry exactly tau normal measures where tau aleph omega regular cardinal contrasts assuming aleph omega measurable carries exactly three normal measures proof uses methods cite along folklore technique method due james cummings

Arthur W. Apter 1

1 Department of Mathematics Baruch College of CUNY New York, NY 10010, U.S.A.
@article{10_4064_fm191_1_4,
     author = {Arthur W. Apter},
     title = {How many normal measures can $\aleph_{\omega + 1}$ carry?},
     journal = {Fundamenta Mathematicae},
     pages = {57--66},
     publisher = {mathdoc},
     volume = {191},
     number = {1},
     year = {2006},
     doi = {10.4064/fm191-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-4/}
}
TY  - JOUR
AU  - Arthur W. Apter
TI  - How many normal measures can $\aleph_{\omega + 1}$ carry?
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 57
EP  - 66
VL  - 191
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-4/
DO  - 10.4064/fm191-1-4
LA  - en
ID  - 10_4064_fm191_1_4
ER  - 
%0 Journal Article
%A Arthur W. Apter
%T How many normal measures can $\aleph_{\omega + 1}$ carry?
%J Fundamenta Mathematicae
%D 2006
%P 57-66
%V 191
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-4/
%R 10.4064/fm191-1-4
%G en
%F 10_4064_fm191_1_4
Arthur W. Apter. How many normal measures can $\aleph_{\omega + 1}$ carry?. Fundamenta Mathematicae, Tome 191 (2006) no. 1, pp. 57-66. doi : 10.4064/fm191-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm191-1-4/

Cité par Sources :