Kelley's specialization of Tychonoff's Theorem
is equivalent to the Boolean Prime Ideal Theorem
Fundamenta Mathematicae, Tome 189 (2006) no. 3, pp. 285-288
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The principle that “any product of cofinite topologies is compact” is equivalent (without appealing to the Axiom of Choice) to the Boolean Prime Ideal Theorem.
Keywords:
principle product cofinite topologies compact equivalent without appealing axiom choice boolean prime ideal theorem
Affiliations des auteurs :
Eric Schechter 1
@article{10_4064_fm189_3_5,
author = {Eric Schechter},
title = {Kelley's specialization of {Tychonoff's} {Theorem
} is equivalent to the {Boolean} {Prime} {Ideal} {Theorem}},
journal = {Fundamenta Mathematicae},
pages = {285--288},
publisher = {mathdoc},
volume = {189},
number = {3},
year = {2006},
doi = {10.4064/fm189-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm189-3-5/}
}
TY - JOUR AU - Eric Schechter TI - Kelley's specialization of Tychonoff's Theorem is equivalent to the Boolean Prime Ideal Theorem JO - Fundamenta Mathematicae PY - 2006 SP - 285 EP - 288 VL - 189 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm189-3-5/ DO - 10.4064/fm189-3-5 LA - en ID - 10_4064_fm189_3_5 ER -
%0 Journal Article %A Eric Schechter %T Kelley's specialization of Tychonoff's Theorem is equivalent to the Boolean Prime Ideal Theorem %J Fundamenta Mathematicae %D 2006 %P 285-288 %V 189 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm189-3-5/ %R 10.4064/fm189-3-5 %G en %F 10_4064_fm189_3_5
Eric Schechter. Kelley's specialization of Tychonoff's Theorem is equivalent to the Boolean Prime Ideal Theorem. Fundamenta Mathematicae, Tome 189 (2006) no. 3, pp. 285-288. doi: 10.4064/fm189-3-5
Cité par Sources :