A connection between multiplication in $C(X)$
and the dimension of $X$
Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 149-154
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a compact Hausdorff topological space.
We show that multiplication in the algebra $C(X)$
is open iff $\dim X1$. On the other hand,
the existence of non-empty open sets $U,V\subset C(X)$
satisfying ${\rm Int}(U\cdot V)=\emptyset$ is equivalent to $\dim X>1$.
The preimage of every set of the first category in $C(X)$ under
the multiplication map
is of the first category in $C(X)\times C(X)$
iff $\dim X \leq 1$.
Keywords:
nbsp compact hausdorff topological space multiplication algebra dim other existence non empty sets subset satisfying int cdot emptyset equivalent dim preimage every set first category under multiplication map first category times dim leq
Affiliations des auteurs :
Andrzej Komisarski 1
@article{10_4064_fm189_2_4,
author = {Andrzej Komisarski},
title = {A connection between multiplication in $C(X)$
and the dimension of $X$},
journal = {Fundamenta Mathematicae},
pages = {149--154},
publisher = {mathdoc},
volume = {189},
number = {2},
year = {2006},
doi = {10.4064/fm189-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-4/}
}
TY - JOUR AU - Andrzej Komisarski TI - A connection between multiplication in $C(X)$ and the dimension of $X$ JO - Fundamenta Mathematicae PY - 2006 SP - 149 EP - 154 VL - 189 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-4/ DO - 10.4064/fm189-2-4 LA - en ID - 10_4064_fm189_2_4 ER -
Andrzej Komisarski. A connection between multiplication in $C(X)$ and the dimension of $X$. Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 149-154. doi: 10.4064/fm189-2-4
Cité par Sources :