Dehn twists on nonorientable surfaces
Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 117-147.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $t_a$ be the Dehn twist about a circle $a$ on an orientable surface. It is well known that for each circle $b$ and an integer $n$, $I(t_a^n(b),b)=|n|I(a,b)^2$, where $I(\cdot,\cdot)$ is the geometric intersection number. We prove a similar formula for circles on nonorientable surfaces. As a corollary we prove some algebraic properties of twists on nonorientable surfaces. We also prove that if ${\cal M}(N)$ is the mapping class group of a nonorientable surface $N$, then up to a finite number of exceptions, the centraliser of the subgroup of ${\cal M}(N)$ generated by the twists is equal to the centre of ${\cal M}(N)$ and is generated by twists about circles isotopic to boundary components of $N$.
DOI : 10.4064/fm189-2-3
Keywords: dehn twist about circle orientable surface known each circle integer n b where cdot cdot geometric intersection number prove similar formula circles nonorientable surfaces corollary prove algebraic properties twists nonorientable surfaces prove cal mapping class group nonorientable surface finite number exceptions centraliser subgroup cal generated twists equal centre cal generated twists about circles isotopic boundary components nbsp

Michał Stukow 1

1 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland
@article{10_4064_fm189_2_3,
     author = {Micha{\l} Stukow},
     title = {Dehn twists on nonorientable surfaces},
     journal = {Fundamenta Mathematicae},
     pages = {117--147},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {2006},
     doi = {10.4064/fm189-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-3/}
}
TY  - JOUR
AU  - Michał Stukow
TI  - Dehn twists on nonorientable surfaces
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 117
EP  - 147
VL  - 189
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-3/
DO  - 10.4064/fm189-2-3
LA  - en
ID  - 10_4064_fm189_2_3
ER  - 
%0 Journal Article
%A Michał Stukow
%T Dehn twists on nonorientable surfaces
%J Fundamenta Mathematicae
%D 2006
%P 117-147
%V 189
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-3/
%R 10.4064/fm189-2-3
%G en
%F 10_4064_fm189_2_3
Michał Stukow. Dehn twists on nonorientable surfaces. Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 117-147. doi : 10.4064/fm189-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-3/

Cité par Sources :