Dehn twists on nonorientable surfaces
Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 117-147
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $t_a$ be the Dehn twist about a circle $a$ on an
orientable surface. It is well known that for each circle
$b$ and an integer $n$, $I(t_a^n(b),b)=|n|I(a,b)^2$, where
$I(\cdot,\cdot)$ is the geometric intersection number. We prove
a similar formula for circles on nonorientable surfaces. As a
corollary we prove some algebraic properties of twists on
nonorientable surfaces. We also prove that if ${\cal M}(N)$ is
the mapping class group of a nonorientable surface $N$, then up
to a finite number of exceptions, the centraliser of the
subgroup of ${\cal M}(N)$ generated by the twists is equal to the
centre of ${\cal M}(N)$ and is generated by twists about circles
isotopic to boundary components of $N$.
Keywords:
dehn twist about circle orientable surface known each circle integer n b where cdot cdot geometric intersection number prove similar formula circles nonorientable surfaces corollary prove algebraic properties twists nonorientable surfaces prove cal mapping class group nonorientable surface finite number exceptions centraliser subgroup cal generated twists equal centre cal generated twists about circles isotopic boundary components nbsp
Affiliations des auteurs :
Michał Stukow 1
@article{10_4064_fm189_2_3,
author = {Micha{\l} Stukow},
title = {Dehn twists on nonorientable surfaces},
journal = {Fundamenta Mathematicae},
pages = {117--147},
publisher = {mathdoc},
volume = {189},
number = {2},
year = {2006},
doi = {10.4064/fm189-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm189-2-3/}
}
Michał Stukow. Dehn twists on nonorientable surfaces. Fundamenta Mathematicae, Tome 189 (2006) no. 2, pp. 117-147. doi: 10.4064/fm189-2-3
Cité par Sources :