Cardinal sequences of length $ \omega_2$ under GCH
Fundamenta Mathematicae, Tome 189 (2006) no. 1, pp. 35-52.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal C (\alpha)$ denote the class of all cardinal sequences of length $\alpha$ associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put $$ {\cal C}_ {\lambda}(\alpha)=\{s\in \mathcal C(\alpha): s(0)={\lambda} = \min[ s({\beta}) : \beta {\alpha}]\}. $$ We show that $f\in \mathcal C(\alpha)$ iff for some natural number $n$ there are infinite cardinals $\lambda_0>\lambda_1>\dots>\lambda_{n-1}$ and ordinals ${\alpha}_0,\dots ,{\alpha}_{n-1}$ such that ${\alpha}={\alpha}_0+\cdots+{\alpha}_{n-1}$ and $f=f_0\kern-3pt\mathop{{}^{\frown}\kern-3pt} f_1\kern-3pt\mathop{{}^{\frown}\kern-3pt} \ldots \kern-3pt\mathop{{}^{\frown}\kern-3pt} f_{n-1}$ where each $f_i\in\mathcal C_{\lambda_i}(\alpha_i)$. Under GCH we prove that if $\alpha \omega_2$ then(i) $\mathcal C_{\omega}(\alpha)=\{s\in {}^{\alpha}\{{\omega},\omega_1\}: s(0)={\omega}\}$;(ii) if $\lambda > \mathop{\rm cf} (\lambda)=\omega$, $$ {\cal C}_ {\lambda}(\alpha)=\{s\in {}^{\alpha}\{{\lambda},{\lambda}^+\}: s(0)={\lambda},\ s^{-1}\{\lambda\}\hbox{ is ${\omega}_1$-closed in ${\alpha}$} \}; $$ (iii) if $\mathop{\rm cf} (\lambda)=\omega_1$, $$ {\cal C}_ {\lambda}(\alpha)=\{s\in {}^{\alpha}\{{\lambda},{\lambda}^+\}: s(0)={\lambda},\, s^{-1}\{\lambda\}\hbox{ is ${\omega}$-closed and successor-closed in ${\alpha}$} \};$$ (iv) if $\mathop{\rm cf} (\lambda)>\omega_1$, $\mathcal C_\lambda (\alpha)= {}^\alpha\{\lambda\}$.
DOI : 10.4064/fm189-1-3
Keywords: mathcal alpha denote class cardinal sequences length alpha associated compact scattered spaces equivalently superatomic boolean algebras put cal lambda alpha mathcal alpha lambda min beta beta alpha mathcal alpha natural number there infinite cardinals lambda lambda dots lambda n ordinals alpha dots alpha n alpha alpha cdots alpha n kern mathop frown kern kern mathop frown kern ldots kern mathop frown kern n where each mathcal lambda alpha under gch prove alpha omega mathcal omega alpha alpha omega omega omega lambda mathop lambda omega cal lambda alpha alpha lambda lambda lambda lambda hbox omega closed alpha iii mathop lambda omega cal lambda alpha alpha lambda lambda lambda lambda hbox omega closed successor closed alpha mathop lambda omega mathcal lambda alpha alpha lambda yields complete characterization classes mathcal alpha alpha omega under gch

István Juhász 1 ; Lajos Soukup 1 ; William Weiss 2

1 Alfréd Rényi Institute of Mathematics V. Reáltanoda utca, 13–15 H-1053 Budapest, Hungary
2 Mathematics Department University of Toronto Toronto, ON, M5S 1A1, Canada
@article{10_4064_fm189_1_3,
     author = {Istv\'an Juh\'asz and Lajos Soukup and William Weiss},
     title = {Cardinal sequences of length  $< \omega_2$ 
under {GCH}},
     journal = {Fundamenta Mathematicae},
     pages = {35--52},
     publisher = {mathdoc},
     volume = {189},
     number = {1},
     year = {2006},
     doi = {10.4064/fm189-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm189-1-3/}
}
TY  - JOUR
AU  - István Juhász
AU  - Lajos Soukup
AU  - William Weiss
TI  - Cardinal sequences of length  $< \omega_2$ 
under GCH
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 35
EP  - 52
VL  - 189
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm189-1-3/
DO  - 10.4064/fm189-1-3
LA  - en
ID  - 10_4064_fm189_1_3
ER  - 
%0 Journal Article
%A István Juhász
%A Lajos Soukup
%A William Weiss
%T Cardinal sequences of length  $< \omega_2$ 
under GCH
%J Fundamenta Mathematicae
%D 2006
%P 35-52
%V 189
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm189-1-3/
%R 10.4064/fm189-1-3
%G en
%F 10_4064_fm189_1_3
István Juhász; Lajos Soukup; William Weiss. Cardinal sequences of length  $< \omega_2$ 
under GCH. Fundamenta Mathematicae, Tome 189 (2006) no. 1, pp. 35-52. doi : 10.4064/fm189-1-3. http://geodesic.mathdoc.fr/articles/10.4064/fm189-1-3/

Cité par Sources :