Bi-Lipschitz embeddings of hyperspaces of compact sets
Fundamenta Mathematicae, Tome 187 (2005) no. 3, pp. 229-254
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the bi-Lipschitz embedding problem for metric compacta
hyperspaces. We observe that the compacta hyperspace $K(X)$ of any
separable, uniformly disconnected metric space $X$ admits a
bi-Lipschitz embedding in $\ell^2$. If $X$ is a countable compact
metric space containing at most $n$ nonisolated points, there is a
Lipschitz embedding of $K(X)$ in $\mathbb R^{n+1}$; in the presence of an
additional convergence condition, this embedding may be chosen to be
bi-Lipschitz. By way of contrast, the hyperspace $K([0,1])$ of the
unit interval contains a bi-Lipschitz copy of a certain self-similar
doubling series-parallel graph studied by Laakso, Lang–Plaut, and
Lee–Mendel–Naor, and consequently admits no bi-Lipschitz embedding
into any uniformly convex Banach space. Schori and West proved that
$K([0,1])$ is homeomorphic with the Hilbert cube, while Hohti showed
that $K([0,1])$ is not bi-Lipschitz equivalent with a variety of
metric Hilbert cubes.
Keywords:
study bi lipschitz embedding problem metric compacta hyperspaces observe compacta hyperspace separable uniformly disconnected metric space admits bi lipschitz embedding ell countable compact metric space containing nonisolated points there lipschitz embedding mathbb presence additional convergence condition embedding may chosen bi lipschitz contrast hyperspace unit interval contains bi lipschitz copy certain self similar doubling series parallel graph studied laakso lang plaut lee mendel naor consequently admits bi lipschitz embedding uniformly convex banach space schori west proved homeomorphic hilbert cube while hohti showed bi lipschitz equivalent variety metric hilbert cubes
Affiliations des auteurs :
Jeremy T. Tyson 1
@article{10_4064_fm187_3_3,
author = {Jeremy T. Tyson},
title = {Bi-Lipschitz embeddings of hyperspaces of compact sets},
journal = {Fundamenta Mathematicae},
pages = {229--254},
publisher = {mathdoc},
volume = {187},
number = {3},
year = {2005},
doi = {10.4064/fm187-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm187-3-3/}
}
Jeremy T. Tyson. Bi-Lipschitz embeddings of hyperspaces of compact sets. Fundamenta Mathematicae, Tome 187 (2005) no. 3, pp. 229-254. doi: 10.4064/fm187-3-3
Cité par Sources :