Determining $c_0$ in $ C({\cal K})$ spaces
Fundamenta Mathematicae, Tome 187 (2005) no. 1, pp. 61-93
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a countable compact metric space $\mathcal{K}$ and a
seminormalized weakly null sequence $(f_n)_n$ in $C(\mathcal{K})$
we provide some upper bounds for the norm of the vectors in the
linear span of a subsequence of $(f_n)_n$. These bounds
depend on the complexity of $\mathcal{K}$ and also on the
sequence $(f_n)_n$ itself. Moreover, we introduce the
class of $c_0$-hierarchies. We prove that for every
$\alpha\omega_1$, every normalized weakly null sequence $(f_n)_n$
in $C(\omega^{\omega^\alpha})$ and every $c_0$-hierarchy
$\mathcal{H}$ generated by $(f_n)_n$, there exists $\beta
\leq\alpha$ such that a sequence of $\beta$-blocks of $(f_n)_n$ is
equivalent to the usual basis of $c_0$.
Keywords:
countable compact metric space mathcal seminormalized weakly null sequence mathcal provide upper bounds norm vectors linear span subsequence these bounds depend complexity mathcal sequence itself moreover introduce class hierarchies prove every alpha omega every normalized weakly null sequence omega omega alpha every hierarchy mathcal generated there exists beta leq alpha sequence beta blocks equivalent usual basis
Affiliations des auteurs :
S. A. Argyros 1 ; V. Kanellopoulos 1
@article{10_4064_fm187_1_3,
author = {S. A. Argyros and V. Kanellopoulos},
title = {Determining $c_0$ in $ C({\cal K})$ spaces},
journal = {Fundamenta Mathematicae},
pages = {61--93},
publisher = {mathdoc},
volume = {187},
number = {1},
year = {2005},
doi = {10.4064/fm187-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm187-1-3/}
}
TY - JOUR
AU - S. A. Argyros
AU - V. Kanellopoulos
TI - Determining $c_0$ in $ C({\cal K})$ spaces
JO - Fundamenta Mathematicae
PY - 2005
SP - 61
EP - 93
VL - 187
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm187-1-3/
DO - 10.4064/fm187-1-3
LA - en
ID - 10_4064_fm187_1_3
ER -
S. A. Argyros; V. Kanellopoulos. Determining $c_0$ in $ C({\cal K})$ spaces. Fundamenta Mathematicae, Tome 187 (2005) no. 1, pp. 61-93. doi: 10.4064/fm187-1-3
Cité par Sources :