Combinatorics of distance doubling maps
Fundamenta Mathematicae, Tome 187 (2005) no. 1, pp. 1-35.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the combinatorics of distance doubling maps on the circle ${\mathbb R}/{\mathbb Z}$ with prototypes $h(\beta)=2\beta\bmod 1$ and $\overline{h}(\beta)=-2\beta\bmod 1$, representing the orientation preserving and orientation reversing case, respectively. In particular, we identify parts of the circle where the iterates $f^{\circ n}$ of a distance doubling map $f$ exhibit “distance doubling behavior”. The results include well known statements for $h$ related to the structure of the Mandelbrot set $M$. For $\overline{h}$ they suggest some analogies to the structure of the tricorn, the “antiholomorphic Mandelbrot set”.
DOI : 10.4064/fm187-1-1
Keywords: study combinatorics distance doubling maps circle mathbb mathbb prototypes beta beta bmod overline beta beta bmod representing orientation preserving orientation reversing respectively particular identify parts circle where iterates circ distance doubling map exhibit distance doubling behavior results include known statements related structure mandelbrot set overline suggest analogies structure tricorn antiholomorphic mandelbrot set

Karsten Keller 1 ; Steffen Winter 2

1 Mathematical Institute University of Lübeck Wallstr. 40 D-23560 Lübeck, Germany
2 Mathematical Institute University of Jena D-07740 Jena, Germany
@article{10_4064_fm187_1_1,
     author = {Karsten Keller and Steffen Winter},
     title = {Combinatorics of distance doubling maps},
     journal = {Fundamenta Mathematicae},
     pages = {1--35},
     publisher = {mathdoc},
     volume = {187},
     number = {1},
     year = {2005},
     doi = {10.4064/fm187-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm187-1-1/}
}
TY  - JOUR
AU  - Karsten Keller
AU  - Steffen Winter
TI  - Combinatorics of distance doubling maps
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 1
EP  - 35
VL  - 187
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm187-1-1/
DO  - 10.4064/fm187-1-1
LA  - en
ID  - 10_4064_fm187_1_1
ER  - 
%0 Journal Article
%A Karsten Keller
%A Steffen Winter
%T Combinatorics of distance doubling maps
%J Fundamenta Mathematicae
%D 2005
%P 1-35
%V 187
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm187-1-1/
%R 10.4064/fm187-1-1
%G en
%F 10_4064_fm187_1_1
Karsten Keller; Steffen Winter. Combinatorics of distance doubling maps. Fundamenta Mathematicae, Tome 187 (2005) no. 1, pp. 1-35. doi : 10.4064/fm187-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm187-1-1/

Cité par Sources :