Combinatorics of distance doubling maps
Fundamenta Mathematicae, Tome 187 (2005) no. 1, pp. 1-35
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the combinatorics of distance doubling maps on
the circle ${\mathbb R}/{\mathbb Z}$ with prototypes
$h(\beta)=2\beta\bmod 1$ and $\overline{h}(\beta)=-2\beta\bmod 1$,
representing the orientation preserving and orientation
reversing case, respectively. In particular, we identify parts of
the circle where the iterates $f^{\circ n}$ of a distance doubling
map $f$ exhibit “distance doubling behavior”.
The results include
well known statements for $h$ related to the structure of the
Mandelbrot set $M$. For $\overline{h}$ they suggest some analogies
to the structure of the tricorn, the “antiholomorphic Mandelbrot
set”.
Keywords:
study combinatorics distance doubling maps circle mathbb mathbb prototypes beta beta bmod overline beta beta bmod representing orientation preserving orientation reversing respectively particular identify parts circle where iterates circ distance doubling map exhibit distance doubling behavior results include known statements related structure mandelbrot set overline suggest analogies structure tricorn antiholomorphic mandelbrot set
Affiliations des auteurs :
Karsten Keller 1 ; Steffen Winter 2
@article{10_4064_fm187_1_1,
author = {Karsten Keller and Steffen Winter},
title = {Combinatorics of distance doubling maps},
journal = {Fundamenta Mathematicae},
pages = {1--35},
publisher = {mathdoc},
volume = {187},
number = {1},
year = {2005},
doi = {10.4064/fm187-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm187-1-1/}
}
Karsten Keller; Steffen Winter. Combinatorics of distance doubling maps. Fundamenta Mathematicae, Tome 187 (2005) no. 1, pp. 1-35. doi: 10.4064/fm187-1-1
Cité par Sources :