On ordinals accessible by infinitary languages
Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 193-214
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\lambda$ be an infinite cardinal number.
The ordinal number $\delta(\lambda)$ is the least ordinal $\gamma$
such that if
$\phi$ is any sentence of $L_{\lambda^+\omega}$,
with a unary predicate $D$ and a binary
predicate $\prec$, and $\phi$ has a model ${\cal M}$ with
$\langle D^{\cal M},\prec^{\cal M}\rangle$ a well-ordering of type $\ge\gamma$,
then $\phi$ has a model ${\cal M}'$ where
$\langle D^{{\cal M}'},\prec^{{\cal M}'}\rangle$ is non-well-ordered.
One of the interesting properties of this number is that
the Hanf number of $L_{\lambda^+\omega}$ is exactly
$\beth_{\delta(\lambda)}$.
It was proved in \cite{BarwiseKunen1971} that if $\aleph_ 0 \lambda
\kappa$ are regular cardinal numbers, then there is a forcing
extension, preserving cofinalities, such
that in the extension $2^ \lambda = \kappa$ and
$\delta (\lambda) \lambda^{{+}{+}}$. We improve this
result by proving the following:
Suppose $\aleph_ 0 \lambda \theta \leq \kappa$ are cardinal
numbers such that
$\bullet$ $\lambda^{ \lambda} = \lambda$;$\bullet$ ${\rm cf}( \theta) \geq \lambda^+$ and $\mu^\lambda
\theta$ whenever $\mu \theta$;$\bullet$ $\kappa^\lambda = \kappa$.Then there is a forcing extension preserving all cofinalities,
adding no new sets of cardinality $ \lambda$, and such that in the extension
$2^ \lambda = \kappa$ and $\delta( \lambda) = \theta$.
Keywords:
lambda infinite cardinal number ordinal number delta lambda least ordinal gamma phi sentence lambda omega unary predicate binary predicate prec phi has model cal langle cal prec cal rangle well ordering type gamma phi has model cal where langle cal prec cal rangle non well ordered interesting properties number hanf number lambda omega exactly beth delta lambda proved cite barwisekunen aleph lambda kappa regular cardinal numbers there forcing extension preserving cofinalities extension lambda kappa delta lambda lambda improve result proving following suppose aleph lambda theta leq kappa cardinal numbers bullet lambda lambda lambda bullet theta geq lambda lambda theta whenever theta bullet kappa lambda kappa there forcing extension preserving cofinalities adding sets cardinality lambda extension lambda kappa delta lambda theta
Affiliations des auteurs :
Saharon Shelah 1 ; Pauli Väisänen 2 ; Jouko Väänänen 2
@article{10_4064_fm186_3_1,
author = {Saharon Shelah and Pauli V\"ais\"anen and Jouko V\"a\"an\"anen},
title = {On ordinals accessible by infinitary languages},
journal = {Fundamenta Mathematicae},
pages = {193--214},
publisher = {mathdoc},
volume = {186},
number = {3},
year = {2005},
doi = {10.4064/fm186-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-1/}
}
TY - JOUR AU - Saharon Shelah AU - Pauli Väisänen AU - Jouko Väänänen TI - On ordinals accessible by infinitary languages JO - Fundamenta Mathematicae PY - 2005 SP - 193 EP - 214 VL - 186 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm186-3-1/ DO - 10.4064/fm186-3-1 LA - en ID - 10_4064_fm186_3_1 ER -
Saharon Shelah; Pauli Väisänen; Jouko Väänänen. On ordinals accessible by infinitary languages. Fundamenta Mathematicae, Tome 186 (2005) no. 3, pp. 193-214. doi: 10.4064/fm186-3-1
Cité par Sources :