Fixed point theory for homogeneous spaces, II}
Fundamenta Mathematicae, Tome 186 (2005) no. 2, pp. 161-175.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a compact connected Lie group, $K$ a closed subgroup and $M=G/K$ the homogeneous space of right cosets. Suppose that $M$ is orientable. We show that for any selfmap $f:M\to M$, $L(f)=0 \Rightarrow N(f)=0$ and $L(f)\ne 0 \Rightarrow N(f)=R(f)$ where $L(f)$, $N(f)$, and $R(f)$ denote the Lefschetz, Nielsen, and Reidemeister numbers of $f$, respectively. In particular, this implies that the Lefschetz number is a complete invariant, i.e., $L(f)=0$ iff $f$ is deformable to be fixed point free. This was previously known under the hypothesis that $p_*:H_n(G) \to H_n(M)$ is nontrivial where $n=\dim M$. A simple formula using equivariant degree is given for the Reidemeister trace of a selfmap $f:M\to M$.
DOI : 10.4064/fm186-2-4
Keywords: compact connected lie group closed subgroup homogeneous space right cosets suppose orientable selfmap rightarrow rightarrow where denote lefschetz nielsen reidemeister numbers respectively particular implies lefschetz number complete invariant deformable fixed point previously known under hypothesis * nontrivial where dim simple formula using equivariant degree given reidemeister trace selfmap

Peter Wong 1

1 Department of Mathematics Bates College Lewiston, ME 04240, U.S.A.
@article{10_4064_fm186_2_4,
     author = {Peter Wong},
     title = {Fixed point theory for homogeneous spaces, {II}}},
     journal = {Fundamenta Mathematicae},
     pages = {161--175},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2005},
     doi = {10.4064/fm186-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-4/}
}
TY  - JOUR
AU  - Peter Wong
TI  - Fixed point theory for homogeneous spaces, II}
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 161
EP  - 175
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-4/
DO  - 10.4064/fm186-2-4
LA  - en
ID  - 10_4064_fm186_2_4
ER  - 
%0 Journal Article
%A Peter Wong
%T Fixed point theory for homogeneous spaces, II}
%J Fundamenta Mathematicae
%D 2005
%P 161-175
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-4/
%R 10.4064/fm186-2-4
%G en
%F 10_4064_fm186_2_4
Peter Wong. Fixed point theory for homogeneous spaces, II}. Fundamenta Mathematicae, Tome 186 (2005) no. 2, pp. 161-175. doi : 10.4064/fm186-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-4/

Cité par Sources :