Fixed point theory for homogeneous spaces, II}
Fundamenta Mathematicae, Tome 186 (2005) no. 2, pp. 161-175
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a compact connected Lie group, $K$ a closed subgroup
and $M=G/K$ the homogeneous space of right cosets.
Suppose that $M$ is orientable. We show that for any selfmap $f:M\to M$,
$L(f)=0 \Rightarrow N(f)=0$ and $L(f)\ne 0 \Rightarrow N(f)=R(f)$
where $L(f)$, $N(f)$, and $R(f)$ denote the Lefschetz, Nielsen,
and Reidemeister numbers of $f$, respectively. In particular,
this implies that the Lefschetz number is a complete invariant,
i.e., $L(f)=0$ iff $f$ is deformable to be fixed point free.
This was previously known under the hypothesis that $p_*:H_n(G) \to H_n(M)$
is nontrivial where $n=\dim M$. A simple formula using equivariant
degree is given for the Reidemeister trace of a selfmap $f:M\to M$.
Keywords:
compact connected lie group closed subgroup homogeneous space right cosets suppose orientable selfmap rightarrow rightarrow where denote lefschetz nielsen reidemeister numbers respectively particular implies lefschetz number complete invariant deformable fixed point previously known under hypothesis * nontrivial where dim simple formula using equivariant degree given reidemeister trace selfmap
Affiliations des auteurs :
Peter Wong 1
@article{10_4064_fm186_2_4,
author = {Peter Wong},
title = {Fixed point theory for homogeneous spaces, {II}}},
journal = {Fundamenta Mathematicae},
pages = {161--175},
publisher = {mathdoc},
volume = {186},
number = {2},
year = {2005},
doi = {10.4064/fm186-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-4/}
}
Peter Wong. Fixed point theory for homogeneous spaces, II}. Fundamenta Mathematicae, Tome 186 (2005) no. 2, pp. 161-175. doi: 10.4064/fm186-2-4
Cité par Sources :