A higher Albanese map for complex threefolds based on a construction by M. Green
Fundamenta Mathematicae, Tome 186 (2005) no. 2, pp. 111-146.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct a higher Abel–Jacobi map for $0$-cycles on complex threefolds and prove that it can be used to describe Mumford's pull-back of a differential form, and that its image is infinite-dimensional in many cases. However, making a certain assumption, we show that it is not always injective.
DOI : 10.4064/fm186-2-2
Keywords: construct higher abel jacobi map cycles complex threefolds prove describe mumfords pull back differential form its image infinite dimensional many cases however making certain assumption always injective

Lorenz Schneider 1

1 Mathematisches Institut der Universität Erlangen Bismarckstrasse 1/2 91054 Erlangen, Germany
@article{10_4064_fm186_2_2,
     author = {Lorenz Schneider},
     title = {A higher {Albanese} map for complex threefolds
 based on a construction by {M.} {Green}},
     journal = {Fundamenta Mathematicae},
     pages = {111--146},
     publisher = {mathdoc},
     volume = {186},
     number = {2},
     year = {2005},
     doi = {10.4064/fm186-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-2/}
}
TY  - JOUR
AU  - Lorenz Schneider
TI  - A higher Albanese map for complex threefolds
 based on a construction by M. Green
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 111
EP  - 146
VL  - 186
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-2/
DO  - 10.4064/fm186-2-2
LA  - en
ID  - 10_4064_fm186_2_2
ER  - 
%0 Journal Article
%A Lorenz Schneider
%T A higher Albanese map for complex threefolds
 based on a construction by M. Green
%J Fundamenta Mathematicae
%D 2005
%P 111-146
%V 186
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-2/
%R 10.4064/fm186-2-2
%G en
%F 10_4064_fm186_2_2
Lorenz Schneider. A higher Albanese map for complex threefolds
 based on a construction by M. Green. Fundamenta Mathematicae, Tome 186 (2005) no. 2, pp. 111-146. doi : 10.4064/fm186-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm186-2-2/

Cité par Sources :