Point-countable $\pi $-bases in first countable and similar spaces
Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 55-69.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is a classical result of Shapirovsky that any compact space of countable tightness has a point-countable $ \pi $-base. We look at general spaces with point-countable $\pi $-bases and prove, in particular, that, under the Continuum Hypothesis, any Lindelöf first countable space has a point-countable $\pi $-base. We also analyze when the function space $ C_{\rm p}(X)$ has a point-countable $ \pi $-base, giving a criterion for this in terms of the topology of $ X$ when $ l^*(X)=\omega $. Dealing with point-countable $\pi $-bases makes it possible to show that, in some models of ZFC, there exists a space $ X$ such that $ C_{\rm p}(X)$ is a $ W$-space in the sense of Gruenhage while there exists no embedding of $ C_{\rm p}(X)$ in a $ {\mit \Sigma }$-product of first countable spaces. This gives a consistent answer to a twenty-years-old problem of Gruenhage.
DOI : 10.4064/fm186-1-4
Keywords: classical result shapirovsky compact space countable tightness has point countable base look general spaces point countable bases prove particular under continuum hypothesis lindel first countable space has point countable base analyze function space has point countable base giving criterion terms topology * omega dealing point countable bases makes possible models zfc there exists space w space sense gruenhage while there exists embedding mit sigma product first countable spaces gives consistent answer twenty years old problem gruenhage

V. V. Tkachuk 1

1 Departamento de Matemáticas Universidad Autónoma Metropolitana Av. San Rafael Atlixco, 186, Col. Vicentina Iztapalapa, C.P. 09340, México D.F., Mexico
@article{10_4064_fm186_1_4,
     author = {V. V. Tkachuk},
     title = {Point-countable $\pi $-bases in first countable
 and similar spaces},
     journal = {Fundamenta Mathematicae},
     pages = {55--69},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {2005},
     doi = {10.4064/fm186-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-4/}
}
TY  - JOUR
AU  - V. V. Tkachuk
TI  - Point-countable $\pi $-bases in first countable
 and similar spaces
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 55
EP  - 69
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-4/
DO  - 10.4064/fm186-1-4
LA  - en
ID  - 10_4064_fm186_1_4
ER  - 
%0 Journal Article
%A V. V. Tkachuk
%T Point-countable $\pi $-bases in first countable
 and similar spaces
%J Fundamenta Mathematicae
%D 2005
%P 55-69
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-4/
%R 10.4064/fm186-1-4
%G en
%F 10_4064_fm186_1_4
V. V. Tkachuk. Point-countable $\pi $-bases in first countable
 and similar spaces. Fundamenta Mathematicae, Tome 186 (2005) no. 1, pp. 55-69. doi : 10.4064/fm186-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm186-1-4/

Cité par Sources :