Zero-one laws for graphs with edge probabilities
decaying with distance. Part II
Fundamenta Mathematicae, Tome 185 (2005) no. 3, pp. 211-245
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G_n$ be the random graph on $[n]=\{1,\ldots,n\}$ with the probability
of $\{i,j\}$ being an edge decaying as a power of the distance, specifically
the probability being $p_{|i-j|}=1/|i-j|^\alpha$, where the constant
$\alpha\in (0,1)$ is irrational. We analyze this theory using an appropriate
weight function on a pair $(A,B)$ of graphs and using an equivalence
relation on $B\setminus A $. We then investigate the model theory of this
theory, including a “finite compactness”. Lastly, as a consequence, we
prove that the zero-one law (for first order logic) holds.
Keywords:
random graph ldots probability being edge decaying power distance specifically probability being i j i j alpha where constant alpha irrational analyze theory using appropriate weight function pair graphs using equivalence relation setminus investigate model theory theory including finite compactness lastly consequence prove zero one law first order logic holds
Affiliations des auteurs :
Saharon Shelah 1
@article{10_4064_fm185_3_2,
author = {Saharon Shelah},
title = {Zero-one laws for graphs with edge probabilities
decaying with distance. {Part} {II}},
journal = {Fundamenta Mathematicae},
pages = {211--245},
publisher = {mathdoc},
volume = {185},
number = {3},
year = {2005},
doi = {10.4064/fm185-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-2/}
}
TY - JOUR AU - Saharon Shelah TI - Zero-one laws for graphs with edge probabilities decaying with distance. Part II JO - Fundamenta Mathematicae PY - 2005 SP - 211 EP - 245 VL - 185 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm185-3-2/ DO - 10.4064/fm185-3-2 LA - en ID - 10_4064_fm185_3_2 ER -
Saharon Shelah. Zero-one laws for graphs with edge probabilities decaying with distance. Part II. Fundamenta Mathematicae, Tome 185 (2005) no. 3, pp. 211-245. doi: 10.4064/fm185-3-2
Cité par Sources :