Large superdecomposable $E(R)$-algebras
Fundamenta Mathematicae, Tome 185 (2005) no. 1, pp. 71-82
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For many domains $R$ (including all Dedekind
domains of characteristic 0 that
are not fields or complete discrete valuation domains) we
construct arbitrarily large
superdecomposable $R$-algebras $A$ that are
at the same time $E(R)$-algebras. Here “superdecomposable” means
that $A$ admits no (directly) indecomposable $R$-algebra summands $ \ne 0$
and “$E(R)$-algebra” refers to the property that every
$R$-endomorphism of the $R$-module ,$A$ is multiplication by an
element of ,$A$.
Mots-clés :
many domains including dedekind domains characteristic fields complete discrete valuation domains construct arbitrarily large superdecomposable r algebras time algebras here superdecomposable means admits directly indecomposable r algebra summands algebra refers property every r endomorphism r module nbsp multiplication element nbsp
Affiliations des auteurs :
Laszlo Fuchs 1 ; Rüdiger Göbel 2
@article{10_4064_fm185_1_5,
author = {Laszlo Fuchs and R\"udiger G\"obel},
title = {Large superdecomposable $E(R)$-algebras},
journal = {Fundamenta Mathematicae},
pages = {71--82},
publisher = {mathdoc},
volume = {185},
number = {1},
year = {2005},
doi = {10.4064/fm185-1-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-5/}
}
Laszlo Fuchs; Rüdiger Göbel. Large superdecomposable $E(R)$-algebras. Fundamenta Mathematicae, Tome 185 (2005) no. 1, pp. 71-82. doi: 10.4064/fm185-1-5
Cité par Sources :