Large superdecomposable $E(R)$-algebras
Fundamenta Mathematicae, Tome 185 (2005) no. 1, pp. 71-82.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For many domains $R$ (including all Dedekind domains of characteristic 0 that are not fields or complete discrete valuation domains) we construct arbitrarily large superdecomposable $R$-algebras $A$ that are at the same time $E(R)$-algebras. Here “superdecomposable” means that $A$ admits no (directly) indecomposable $R$-algebra summands $ \ne 0$ and “$E(R)$-algebra” refers to the property that every $R$-endomorphism of the $R$-module ,$A$ is multiplication by an element of ,$A$.
DOI : 10.4064/fm185-1-5
Mots-clés : many domains including dedekind domains characteristic fields complete discrete valuation domains construct arbitrarily large superdecomposable r algebras time algebras here superdecomposable means admits directly indecomposable r algebra summands algebra refers property every r endomorphism r module nbsp multiplication element nbsp

Laszlo Fuchs 1 ; Rüdiger Göbel 2

1 Department of Mathematics Tulane University New Orleans, LA 70118, U.S.A.
2 Fachbereich 6, Mathematik Universität Duisburg Essen D-45117 Essen, Germany
@article{10_4064_fm185_1_5,
     author = {Laszlo Fuchs and R\"udiger G\"obel},
     title = {Large superdecomposable $E(R)$-algebras},
     journal = {Fundamenta Mathematicae},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {185},
     number = {1},
     year = {2005},
     doi = {10.4064/fm185-1-5},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-5/}
}
TY  - JOUR
AU  - Laszlo Fuchs
AU  - Rüdiger Göbel
TI  - Large superdecomposable $E(R)$-algebras
JO  - Fundamenta Mathematicae
PY  - 2005
SP  - 71
EP  - 82
VL  - 185
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-5/
DO  - 10.4064/fm185-1-5
LA  - fr
ID  - 10_4064_fm185_1_5
ER  - 
%0 Journal Article
%A Laszlo Fuchs
%A Rüdiger Göbel
%T Large superdecomposable $E(R)$-algebras
%J Fundamenta Mathematicae
%D 2005
%P 71-82
%V 185
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-5/
%R 10.4064/fm185-1-5
%G fr
%F 10_4064_fm185_1_5
Laszlo Fuchs; Rüdiger Göbel. Large superdecomposable $E(R)$-algebras. Fundamenta Mathematicae, Tome 185 (2005) no. 1, pp. 71-82. doi : 10.4064/fm185-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm185-1-5/

Cité par Sources :