Is ${\cal P}(\omega )$ a subalgebra?
Fundamenta Mathematicae, Tome 183 (2004) no. 2, pp. 91-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the question of whether ${\mathcal P}(\omega )$ is a subalgebra whenever it is a quotient of a Boolean algebra by a countably generated ideal. This question was raised privately by Murray Bell. We obtain two partial answers under the open coloring axiom. Topologically our first result is that if a zero-dimensional compact space has a zero-set mapping onto $\beta {\mathbb N}$, then it has a regular closed zero-set mapping onto $\beta {\mathbb N}$. The second result is that if the compact space has density at most $\omega _1$, then it will map onto $\beta {\mathbb N}$ if it contains a zero-set that maps onto $\beta {\mathbb N}$.
DOI : 10.4064/fm183-2-1
Mots-clés : consider question whether mathcal omega subalgebra whenever quotient boolean algebra countably generated ideal question raised privately murray bell obtain partial answers under coloring axiom topologically first result zero dimensional compact space has zero set mapping beta mathbb has regular closed zero set mapping beta mathbb second result compact space has density omega map beta mathbb contains zero set maps beta mathbb

Alan Dow 1 ; Ilijas Farah 2

1 Department of Mathematics UNC-Charlotte 9201 University City Blvd. Charlotte, NC 28223-0001, U.S.A.
2 Department of Mathematics and Statistics York University 4700 Keele Street North York, Ontario, Canada, M3J 1P3 and Matematicki Institut Kneza Mihaila 35 Beograd, Serbia and Montenegro
@article{10_4064_fm183_2_1,
     author = {Alan Dow and Ilijas Farah},
     title = {Is ${\cal P}(\omega )$ a subalgebra?},
     journal = {Fundamenta Mathematicae},
     pages = {91--108},
     publisher = {mathdoc},
     volume = {183},
     number = {2},
     year = {2004},
     doi = {10.4064/fm183-2-1},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-1/}
}
TY  - JOUR
AU  - Alan Dow
AU  - Ilijas Farah
TI  - Is ${\cal P}(\omega )$ a subalgebra?
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 91
EP  - 108
VL  - 183
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-1/
DO  - 10.4064/fm183-2-1
LA  - de
ID  - 10_4064_fm183_2_1
ER  - 
%0 Journal Article
%A Alan Dow
%A Ilijas Farah
%T Is ${\cal P}(\omega )$ a subalgebra?
%J Fundamenta Mathematicae
%D 2004
%P 91-108
%V 183
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-1/
%R 10.4064/fm183-2-1
%G de
%F 10_4064_fm183_2_1
Alan Dow; Ilijas Farah. Is ${\cal P}(\omega )$ a subalgebra?. Fundamenta Mathematicae, Tome 183 (2004) no. 2, pp. 91-108. doi : 10.4064/fm183-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm183-2-1/

Cité par Sources :