Combinatorics of dense subsets of the rationals
Fundamenta Mathematicae, Tome 183 (2004) no. 1, pp. 59-80.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study combinatorial properties of the partial order $({\rm Dense}(\Bbb Q ), \subseteq)$. To do that we introduce cardinal invariants $\frak p_\Bbb Q,\frak t_\Bbb Q,\frak h_\Bbb Q,\frak s_\Bbb Q,\frak r_\Bbb Q, \frak i_\Bbb Q$ describing properties of ${\rm Dense}(\Bbb Q )$. These invariants satisfy $\frak p_\Bbb Q\leq \frak t_\Bbb Q\leq \frak h_\Bbb Q\leq \frak s_\Bbb Q \leq\frak r_\Bbb Q\leq\frak i_\Bbb Q$. We compare them with their analogues in the well studied Boolean algebra ${\cal P}(\omega)/{\rm fin}$. We show that $\frak p_\Bbb Q =\frak p$, $\frak t_\Bbb Q =\frak t$ and $\frak i_\Bbb Q =\frak i$, whereas $\frak h_\Bbb Q >\frak h$ and $\frak r_\Bbb Q >\frak r$ are both shown to be relatively consistent with ZFC. We also investigate combinatorics of the ideal nwd of nowhere dense subsets of ,$\Bbb Q$. In particular, we show that $\mathop{\rm non}\nolimits (\mathcal M)=\min \{ \vert \mathcal{D}\vert : \mathcal{D}\subseteq {\rm Dense}( \Bbb{R}) \wedge ( \forall I\in \mathop{\rm nwd}\nolimits (\Bbb R) ) ( \exists D\in \mathcal{D}) ( I\cap D=\emptyset ) \}$ and $\mathop{\rm cof}\nolimits (\mathcal M)=\min \{ \vert \mathcal{D}\vert : \mathcal{D}\subseteq {\rm Dense}( \Bbb{Q}) \wedge ( \forall I\in \mathop{\rm nwd}\nolimits ) ( \exists D\in \mathcal{D}) ( I\cap D=\emptyset ) \}$. We use these facts to show that $\mathop{\rm cof}\nolimits (\mathcal M)\leq\frak i$, which improves a result of S. Shelah.
DOI : 10.4064/fm183-1-4
Keywords: study combinatorial properties partial order dense bbb subseteq introduce cardinal invariants frak bbb frak bbb frak bbb frak bbb frak bbb frak bbb describing properties dense bbb these invariants satisfy frak bbb leq frak bbb leq frak bbb leq frak bbb leq frak bbb leq frak bbb compare their analogues studied boolean algebra cal omega fin frak bbb frak frak bbb frak frak bbb frak whereas frak bbb frak frak bbb frak shown relatively consistent zfc investigate combinatorics ideal nwd nowhere dense subsets nbsp bbb particular mathop nolimits mathcal min vert mathcal vert mathcal subseteq dense bbb wedge forall mathop nwd nolimits bbb exists mathcal cap emptyset mathop cof nolimits mathcal min vert mathcal vert mathcal subseteq dense bbb wedge forall mathop nwd nolimits exists mathcal cap emptyset these facts mathop cof nolimits mathcal leq frak which improves result shelah

B. Balcar 1 ; F. Hernández-Hernández 2 ; M. Hrušák 2

1 Mathematical Institute of the Academy of Sciences of the Czech Republic Žitná 25 115 67 Praha 1, Czech Republic
2 Instituto de Matemáticas UNAM Unidad Morelia A. P. 61-3, Xangari C.P. 58089, Morelia, Mich., México
@article{10_4064_fm183_1_4,
     author = {B. Balcar and F. Hern\'andez-Hern\'andez and M. Hru\v{s}\'ak},
     title = {Combinatorics of dense subsets of the rationals},
     journal = {Fundamenta Mathematicae},
     pages = {59--80},
     publisher = {mathdoc},
     volume = {183},
     number = {1},
     year = {2004},
     doi = {10.4064/fm183-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm183-1-4/}
}
TY  - JOUR
AU  - B. Balcar
AU  - F. Hernández-Hernández
AU  - M. Hrušák
TI  - Combinatorics of dense subsets of the rationals
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 59
EP  - 80
VL  - 183
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm183-1-4/
DO  - 10.4064/fm183-1-4
LA  - en
ID  - 10_4064_fm183_1_4
ER  - 
%0 Journal Article
%A B. Balcar
%A F. Hernández-Hernández
%A M. Hrušák
%T Combinatorics of dense subsets of the rationals
%J Fundamenta Mathematicae
%D 2004
%P 59-80
%V 183
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm183-1-4/
%R 10.4064/fm183-1-4
%G en
%F 10_4064_fm183_1_4
B. Balcar; F. Hernández-Hernández; M. Hrušák. Combinatorics of dense subsets of the rationals. Fundamenta Mathematicae, Tome 183 (2004) no. 1, pp. 59-80. doi : 10.4064/fm183-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm183-1-4/

Cité par Sources :