Non-recurrent meromorphic functions
Fundamenta Mathematicae, Tome 182 (2004) no. 3, pp. 269-281
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a transcendental meromorphic function $f$ belonging to the class ${\mathcal B}$ (with bounded set of singular values). We show that if the Julia set $J(f)$ is the whole complex plane ${\mathbb C}$, and the closure of the postcritical set $P(f)$ is contained in $B(0,R)\cup \{\infty \}$ and is disjoint from the set Crit$(f)$ of critical points, then every compact and forward invariant set is hyperbolic, provided that it is disjoint from Crit$(f)$. It is further shown, under general additional hypotheses, that $f$ admits no measurable invariant line-field.
Keywords:
consider transcendental meromorphic function belonging class mathcal bounded set singular values julia set whole complex plane mathbb closure postcritical set contained cup infty disjoint set crit critical points every compact forward invariant set hyperbolic provided disjoint crit further shown under general additional hypotheses admits measurable invariant line field
Affiliations des auteurs :
Jacek Graczyk 1 ; Janina Kotus 2 ; Grzegorz /Swiątek 3
@article{10_4064_fm182_3_5,
author = {Jacek Graczyk and Janina Kotus and Grzegorz /Swi\k{a}tek},
title = {Non-recurrent meromorphic functions},
journal = {Fundamenta Mathematicae},
pages = {269--281},
publisher = {mathdoc},
volume = {182},
number = {3},
year = {2004},
doi = {10.4064/fm182-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-3-5/}
}
TY - JOUR AU - Jacek Graczyk AU - Janina Kotus AU - Grzegorz /Swiątek TI - Non-recurrent meromorphic functions JO - Fundamenta Mathematicae PY - 2004 SP - 269 EP - 281 VL - 182 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm182-3-5/ DO - 10.4064/fm182-3-5 LA - en ID - 10_4064_fm182_3_5 ER -
Jacek Graczyk; Janina Kotus; Grzegorz /Swiątek. Non-recurrent meromorphic functions. Fundamenta Mathematicae, Tome 182 (2004) no. 3, pp. 269-281. doi: 10.4064/fm182-3-5
Cité par Sources :