Diagonalization in proof complexity
Fundamenta Mathematicae, Tome 182 (2004) no. 2, pp. 181-192.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study diagonalization in the context of implicit proofs of [10]. We prove that at least one of the following three conjectures is true:$\bullet$ There is a function $f : \{0, 1\}^{*} \rightarrow \{0,1\}$ computable in ${\cal E}$ that has circuit complexity $2^{{\mit\Omega}(n)}$. $\bullet$ ${\cal N}{\cal P} \neq \mathop{\rm co} {\cal N}{\cal P}$. $\bullet$ There is no $p$-optimal propositional proof system.We note that a variant of the statement (either ${\cal N}{\cal P} \neq \mathop{\rm co}{\cal N}{\cal P}$ or ${\cal N}{\cal E}\cap \mathop{\rm co}{\cal N}{\cal E}$ contains a function $2^{{\mit\Omega}(n)}$ hard on average) seems to have a bearing on the existence of good proof complexity generators. In particular, we prove that if a minor variant of a recent conjecture of Razborov [17, Conjecture 2] is true (stating conditional lower bounds for the Extended Frege proof system EF) then actually unconditional lower bounds would follow for EF.
DOI : 10.4064/fm182-2-7
Keywords: study diagonalization context implicit proofs prove least following three conjectures bullet there function * rightarrow computable cal has circuit complexity mit omega bullet cal cal neq mathop cal cal bullet there p optimal propositional proof system note variant statement either cal cal neq mathop cal cal cal cal cap mathop cal cal contains function mit omega hard average seems have bearing existence proof complexity generators particular prove minor variant recent conjecture razborov conjecture stating conditional lower bounds extended frege proof system nbsp actually unconditional lower bounds would follow nbsp

Jan Krajíček 1

1 Mathematical Institute Academy of Sciences Žitná 25 CZ 115 67 Praha 1, Czech Republic
@article{10_4064_fm182_2_7,
     author = {Jan Kraj{\'\i}\v{c}ek},
     title = {Diagonalization in proof complexity},
     journal = {Fundamenta Mathematicae},
     pages = {181--192},
     publisher = {mathdoc},
     volume = {182},
     number = {2},
     year = {2004},
     doi = {10.4064/fm182-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-7/}
}
TY  - JOUR
AU  - Jan Krajíček
TI  - Diagonalization in proof complexity
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 181
EP  - 192
VL  - 182
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-7/
DO  - 10.4064/fm182-2-7
LA  - en
ID  - 10_4064_fm182_2_7
ER  - 
%0 Journal Article
%A Jan Krajíček
%T Diagonalization in proof complexity
%J Fundamenta Mathematicae
%D 2004
%P 181-192
%V 182
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-7/
%R 10.4064/fm182-2-7
%G en
%F 10_4064_fm182_2_7
Jan Krajíček. Diagonalization in proof complexity. Fundamenta Mathematicae, Tome 182 (2004) no. 2, pp. 181-192. doi : 10.4064/fm182-2-7. http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-7/

Cité par Sources :