$G_\delta $ and co-meager semifilters
Fundamenta Mathematicae, Tome 235 (2016) no. 2, pp. 153-166.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The ultrafilters on the partial order $([\omega ]^{\omega },\subseteq ^*)$ are the free ultrafilters on $\omega $, which constitute the space $\omega ^*$, the Stone–Čech remainder of $\omega $. If $U$ is an upperset of this partial order (i.e., a semifilter), then ultrafilters on $U$ correspond to closed subsets of $\omega ^*$ via Stone duality. If $U$ is large enough, then it is possible to get combinatorially nice ultrafilters on $U$ by generalizing the corresponding constructions for $[\omega ]^\omega $. In particular, if $U$ is co-meager then there are ultrafilters on $U$ that are weak $P$-filters (extending a result of Kunen). If $U$ is $G_\delta $ (and hence also co-meager) and $\mathfrak {d=c}$, then there are ultrafilters on $U$ that are $P$-filters (extending a result of Ketonen). For certain choices of $U$, these constructions have applications in dynamics, algebra, and combinatorics. Most notably, we give a new proof of the fact that there are minimal-maximal idempotents in $(\omega ^*,+)$. This was an outstanding open problem solved only recently by Zelenyuk.
DOI : 10.4064/fm182-2-2016
Keywords: ultrafilters partial order omega omega subseteq * ultrafilters nbsp omega which constitute space omega * stone ech remainder omega upperset partial order semifilter ultrafilters correspond closed subsets nbsp omega * via stone duality large enough possible get combinatorially nice ultrafilters generalizing corresponding constructions omega omega particular co meager there ultrafilters weak p filters extending result kunen delta hence co meager mathfrak there ultrafilters p filters extending result ketonen certain choices these constructions have applications dynamics algebra combinatorics notably proof there minimal maximal idempotents omega * outstanding problem solved only recently zelenyuk

William R. Brian 1 ; Jonathan L. Verner 2

1 Department of Mathematics Tulane University 6823 St. Charles Ave. New Orleans, LA 70118, U.S.A.
2 Department of Logic Faculty of Arts Charles University Palachovo nám. 2 116 38 Praha 1, Czech Republic
@article{10_4064_fm182_2_2016,
     author = {William R. Brian and Jonathan L. Verner},
     title = {$G_\delta $ and co-meager semifilters},
     journal = {Fundamenta Mathematicae},
     pages = {153--166},
     publisher = {mathdoc},
     volume = {235},
     number = {2},
     year = {2016},
     doi = {10.4064/fm182-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-2016/}
}
TY  - JOUR
AU  - William R. Brian
AU  - Jonathan L. Verner
TI  - $G_\delta $ and co-meager semifilters
JO  - Fundamenta Mathematicae
PY  - 2016
SP  - 153
EP  - 166
VL  - 235
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-2016/
DO  - 10.4064/fm182-2-2016
LA  - en
ID  - 10_4064_fm182_2_2016
ER  - 
%0 Journal Article
%A William R. Brian
%A Jonathan L. Verner
%T $G_\delta $ and co-meager semifilters
%J Fundamenta Mathematicae
%D 2016
%P 153-166
%V 235
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-2016/
%R 10.4064/fm182-2-2016
%G en
%F 10_4064_fm182_2_2016
William R. Brian; Jonathan L. Verner. $G_\delta $ and co-meager semifilters. Fundamenta Mathematicae, Tome 235 (2016) no. 2, pp. 153-166. doi : 10.4064/fm182-2-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-2016/

Cité par Sources :