$G_\delta $ and co-meager semifilters
Fundamenta Mathematicae, Tome 235 (2016) no. 2, pp. 153-166
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The ultrafilters on the partial order $([\omega ]^{\omega },\subseteq ^*)$ are the free ultrafilters on $\omega $, which constitute the space $\omega ^*$, the Stone–Čech remainder of $\omega $. If $U$ is an upperset of this partial order (i.e., a semifilter), then ultrafilters on $U$ correspond to closed subsets of $\omega ^*$ via Stone duality. If $U$ is large enough, then it is possible to get combinatorially nice ultrafilters on $U$ by generalizing the corresponding constructions for $[\omega ]^\omega $. In particular, if $U$ is co-meager then there are ultrafilters on $U$ that are weak $P$-filters (extending a result of Kunen). If $U$ is $G_\delta $ (and hence also co-meager) and $\mathfrak {d=c}$, then there are ultrafilters on $U$ that are $P$-filters (extending a result of Ketonen). For certain choices of $U$, these constructions have applications in dynamics, algebra, and combinatorics. Most notably, we give a new proof of the fact that there are minimal-maximal idempotents in $(\omega ^*,+)$. This was an outstanding open problem solved only recently by Zelenyuk.
Keywords:
ultrafilters partial order omega omega subseteq * ultrafilters nbsp omega which constitute space omega * stone ech remainder omega upperset partial order semifilter ultrafilters correspond closed subsets nbsp omega * via stone duality large enough possible get combinatorially nice ultrafilters generalizing corresponding constructions omega omega particular co meager there ultrafilters weak p filters extending result kunen delta hence co meager mathfrak there ultrafilters p filters extending result ketonen certain choices these constructions have applications dynamics algebra combinatorics notably proof there minimal maximal idempotents omega * outstanding problem solved only recently zelenyuk
Affiliations des auteurs :
William R. Brian 1 ; Jonathan L. Verner 2
@article{10_4064_fm182_2_2016,
author = {William R. Brian and Jonathan L. Verner},
title = {$G_\delta $ and co-meager semifilters},
journal = {Fundamenta Mathematicae},
pages = {153--166},
publisher = {mathdoc},
volume = {235},
number = {2},
year = {2016},
doi = {10.4064/fm182-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-2016/}
}
TY - JOUR AU - William R. Brian AU - Jonathan L. Verner TI - $G_\delta $ and co-meager semifilters JO - Fundamenta Mathematicae PY - 2016 SP - 153 EP - 166 VL - 235 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm182-2-2016/ DO - 10.4064/fm182-2-2016 LA - en ID - 10_4064_fm182_2_2016 ER -
William R. Brian; Jonathan L. Verner. $G_\delta $ and co-meager semifilters. Fundamenta Mathematicae, Tome 235 (2016) no. 2, pp. 153-166. doi: 10.4064/fm182-2-2016
Cité par Sources :