Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Michael G. Charalambous 1
@article{10_4064_fm182_1_2, author = {Michael G. Charalambous}, title = {The dimension of metrizable subspaces {of Eberlein} compacta and {Eberlein compactifications} of metrizable spaces}, journal = {Fundamenta Mathematicae}, pages = {41--52}, publisher = {mathdoc}, volume = {182}, number = {1}, year = {2004}, doi = {10.4064/fm182-1-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/} }
TY - JOUR AU - Michael G. Charalambous TI - The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces JO - Fundamenta Mathematicae PY - 2004 SP - 41 EP - 52 VL - 182 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/ DO - 10.4064/fm182-1-2 LA - en ID - 10_4064_fm182_1_2 ER -
%0 Journal Article %A Michael G. Charalambous %T The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces %J Fundamenta Mathematicae %D 2004 %P 41-52 %V 182 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/ %R 10.4064/fm182-1-2 %G en %F 10_4064_fm182_1_2
Michael G. Charalambous. The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces. Fundamenta Mathematicae, Tome 182 (2004) no. 1, pp. 41-52. doi : 10.4064/fm182-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/
Cité par Sources :