The dimension of metrizable subspaces of
Eberlein compacta and Eberlein
compactifications of metrizable spaces
Fundamenta Mathematicae, Tome 182 (2004) no. 1, pp. 41-52
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every Baire subspace $Y$ of $c_0(\mit\Gamma)$ has a
dense $G_\delta$ metrizable subspace $X$ with $\dim X \leq \dim Y$. We
also prove that the Kimura–Morishita Eberlein compactifications of
metrizable spaces preserve large inductive dimension. The proofs
rely on new and old results concerning the dimension of uniform
spaces.
Keywords:
prove every baire subspace mit gamma has dense delta metrizable subspace dim leq dim prove kimura morishita eberlein compactifications metrizable spaces preserve large inductive dimension proofs rely old results concerning dimension uniform spaces
Affiliations des auteurs :
Michael G. Charalambous 1
@article{10_4064_fm182_1_2,
author = {Michael G. Charalambous},
title = {The dimension of metrizable subspaces {of
Eberlein} compacta and {Eberlein
compactifications} of metrizable spaces},
journal = {Fundamenta Mathematicae},
pages = {41--52},
publisher = {mathdoc},
volume = {182},
number = {1},
year = {2004},
doi = {10.4064/fm182-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/}
}
TY - JOUR AU - Michael G. Charalambous TI - The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces JO - Fundamenta Mathematicae PY - 2004 SP - 41 EP - 52 VL - 182 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/ DO - 10.4064/fm182-1-2 LA - en ID - 10_4064_fm182_1_2 ER -
%0 Journal Article %A Michael G. Charalambous %T The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces %J Fundamenta Mathematicae %D 2004 %P 41-52 %V 182 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/ %R 10.4064/fm182-1-2 %G en %F 10_4064_fm182_1_2
Michael G. Charalambous. The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces. Fundamenta Mathematicae, Tome 182 (2004) no. 1, pp. 41-52. doi: 10.4064/fm182-1-2
Cité par Sources :