The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces
Fundamenta Mathematicae, Tome 182 (2004) no. 1, pp. 41-52.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that every Baire subspace $Y$ of $c_0(\mit\Gamma)$ has a dense $G_\delta$ metrizable subspace $X$ with $\dim X \leq \dim Y$. We also prove that the Kimura–Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.
DOI : 10.4064/fm182-1-2
Keywords: prove every baire subspace mit gamma has dense delta metrizable subspace dim leq dim prove kimura morishita eberlein compactifications metrizable spaces preserve large inductive dimension proofs rely old results concerning dimension uniform spaces

Michael G. Charalambous 1

1 Department of Mathematics University of the Aegean 83 200, Karlovassi, Samos, Greece
@article{10_4064_fm182_1_2,
     author = {Michael G. Charalambous},
     title = {The dimension of metrizable subspaces {of
Eberlein} compacta and {Eberlein
compactifications} of metrizable spaces},
     journal = {Fundamenta Mathematicae},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {182},
     number = {1},
     year = {2004},
     doi = {10.4064/fm182-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/}
}
TY  - JOUR
AU  - Michael G. Charalambous
TI  - The dimension of metrizable subspaces of
Eberlein compacta and Eberlein
compactifications of metrizable spaces
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 41
EP  - 52
VL  - 182
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/
DO  - 10.4064/fm182-1-2
LA  - en
ID  - 10_4064_fm182_1_2
ER  - 
%0 Journal Article
%A Michael G. Charalambous
%T The dimension of metrizable subspaces of
Eberlein compacta and Eberlein
compactifications of metrizable spaces
%J Fundamenta Mathematicae
%D 2004
%P 41-52
%V 182
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/
%R 10.4064/fm182-1-2
%G en
%F 10_4064_fm182_1_2
Michael G. Charalambous. The dimension of metrizable subspaces of
Eberlein compacta and Eberlein
compactifications of metrizable spaces. Fundamenta Mathematicae, Tome 182 (2004) no. 1, pp. 41-52. doi : 10.4064/fm182-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm182-1-2/

Cité par Sources :