Uncountable cardinals have the same monadic
$\forall _1^1$ positive theory over large sets
Fundamenta Mathematicae, Tome 181 (2004) no. 2, pp. 125-142
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form $(\forall X)\phi (X)$ and $(\exists X)\phi (X)$, for $\phi $ positive in $X$ and containing no set-quantifiers, when the set variables range over large ($=$ cofinal) subsets of the cardinals. This strengthens the result of Doner–Mostowski–Tarski [3] that $(\kappa ,\in )$, $(\lambda ,\in )$ are elementarily equivalent when $\kappa $, $\lambda $ are uncountable. It follows that we can consistently postulate that the structures $(2^\kappa ,[2^\kappa ]^{>\kappa },)$, $(2^\lambda ,[2^\lambda ]^{>\lambda },)$ are indistinguishable with respect to $\forall _1^1$ positive sentences. A consequence of this postulate is that $2^\kappa =\kappa ^+$ iff $2^\lambda =\lambda ^+$ for all infinite $\kappa $, $\lambda $. Moreover, if measurable cardinals do not exist, GCH is true.
Keywords:
uncountable cardinals indistinguishable sentences monadic second order language order form forall phi exists phi phi positive containing set quantifiers set variables range large cofinal subsets cardinals strengthens result doner mostowski tarski kappa lambda elementarily equivalent kappa lambda uncountable follows consistently postulate structures kappa kappa kappa lambda lambda lambda indistinguishable respect forall positive sentences consequence postulate kappa kappa lambda lambda infinite kappa lambda moreover measurable cardinals exist gch
Affiliations des auteurs :
Athanassios Tzouvaras  1
@article{10_4064_fm181_2_3,
author = {Athanassios Tzouvaras},
title = {Uncountable cardinals have the same monadic
$\forall _1^1$ positive theory over large sets},
journal = {Fundamenta Mathematicae},
pages = {125--142},
year = {2004},
volume = {181},
number = {2},
doi = {10.4064/fm181-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm181-2-3/}
}
TY - JOUR AU - Athanassios Tzouvaras TI - Uncountable cardinals have the same monadic $\forall _1^1$ positive theory over large sets JO - Fundamenta Mathematicae PY - 2004 SP - 125 EP - 142 VL - 181 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm181-2-3/ DO - 10.4064/fm181-2-3 LA - en ID - 10_4064_fm181_2_3 ER -
%0 Journal Article %A Athanassios Tzouvaras %T Uncountable cardinals have the same monadic $\forall _1^1$ positive theory over large sets %J Fundamenta Mathematicae %D 2004 %P 125-142 %V 181 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/fm181-2-3/ %R 10.4064/fm181-2-3 %G en %F 10_4064_fm181_2_3
Athanassios Tzouvaras. Uncountable cardinals have the same monadic $\forall _1^1$ positive theory over large sets. Fundamenta Mathematicae, Tome 181 (2004) no. 2, pp. 125-142. doi: 10.4064/fm181-2-3
Cité par Sources :