Uncountable cardinals have the same monadic $\forall _1^1$ positive theory over large sets
Fundamenta Mathematicae, Tome 181 (2004) no. 2, pp. 125-142.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that uncountable cardinals are indistinguishable by sentences of the monadic second-order language of order of the form $(\forall X)\phi (X)$ and $(\exists X)\phi (X)$, for $\phi $ positive in $X$ and containing no set-quantifiers, when the set variables range over large ($=$ cofinal) subsets of the cardinals. This strengthens the result of Doner–Mostowski–Tarski [3] that $(\kappa ,\in )$, $(\lambda ,\in )$ are elementarily equivalent when $\kappa $, $\lambda $ are uncountable. It follows that we can consistently postulate that the structures $(2^\kappa ,[2^\kappa ]^{>\kappa },)$, $(2^\lambda ,[2^\lambda ]^{>\lambda },)$ are indistinguishable with respect to $\forall _1^1$ positive sentences. A consequence of this postulate is that $2^\kappa =\kappa ^+$ iff $2^\lambda =\lambda ^+$ for all infinite $\kappa $, $\lambda $. Moreover, if measurable cardinals do not exist, GCH is true.
DOI : 10.4064/fm181-2-3
Keywords: uncountable cardinals indistinguishable sentences monadic second order language order form forall phi exists phi phi positive containing set quantifiers set variables range large cofinal subsets cardinals strengthens result doner mostowski tarski kappa lambda elementarily equivalent kappa lambda uncountable follows consistently postulate structures kappa kappa kappa lambda lambda lambda indistinguishable respect forall positive sentences consequence postulate kappa kappa lambda lambda infinite kappa lambda moreover measurable cardinals exist gch

Athanassios Tzouvaras 1

1 Department of Mathematics University of Thessaloniki 541 24 Thessaloniki, Greece
@article{10_4064_fm181_2_3,
     author = {Athanassios Tzouvaras},
     title = {Uncountable cardinals have the same monadic
 $\forall _1^1$ positive theory over large sets},
     journal = {Fundamenta Mathematicae},
     pages = {125--142},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2004},
     doi = {10.4064/fm181-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm181-2-3/}
}
TY  - JOUR
AU  - Athanassios Tzouvaras
TI  - Uncountable cardinals have the same monadic
 $\forall _1^1$ positive theory over large sets
JO  - Fundamenta Mathematicae
PY  - 2004
SP  - 125
EP  - 142
VL  - 181
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm181-2-3/
DO  - 10.4064/fm181-2-3
LA  - en
ID  - 10_4064_fm181_2_3
ER  - 
%0 Journal Article
%A Athanassios Tzouvaras
%T Uncountable cardinals have the same monadic
 $\forall _1^1$ positive theory over large sets
%J Fundamenta Mathematicae
%D 2004
%P 125-142
%V 181
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm181-2-3/
%R 10.4064/fm181-2-3
%G en
%F 10_4064_fm181_2_3
Athanassios Tzouvaras. Uncountable cardinals have the same monadic
 $\forall _1^1$ positive theory over large sets. Fundamenta Mathematicae, Tome 181 (2004) no. 2, pp. 125-142. doi : 10.4064/fm181-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm181-2-3/

Cité par Sources :