Orderings of monomial ideals
Fundamenta Mathematicae, Tome 181 (2004) no. 1, pp. 27-74
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the set of monomial ideals in a polynomial ring as an ordered set, with the ordering given by reverse inclusion. We give a short proof of the fact that every antichain of monomial ideals is finite. Then we investigate ordinal invariants for the complexity of this ordered set. In particular, we give an interpretation of the height function in terms of the Hilbert–Samuel polynomial, and we compute bounds on the maximal order type.
Keywords:
study set monomial ideals polynomial ring ordered set ordering given reverse inclusion short proof every antichain monomial ideals finite investigate ordinal invariants complexity ordered set particular interpretation height function terms hilbert samuel polynomial compute bounds maximal order type
Affiliations des auteurs :
Matthias Aschenbrenner 1 ; Wai Yan Pong 2
@article{10_4064_fm181_1_2,
author = {Matthias Aschenbrenner and Wai Yan Pong},
title = {Orderings of monomial ideals},
journal = {Fundamenta Mathematicae},
pages = {27--74},
publisher = {mathdoc},
volume = {181},
number = {1},
year = {2004},
doi = {10.4064/fm181-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm181-1-2/}
}
Matthias Aschenbrenner; Wai Yan Pong. Orderings of monomial ideals. Fundamenta Mathematicae, Tome 181 (2004) no. 1, pp. 27-74. doi: 10.4064/fm181-1-2
Cité par Sources :