The Lindelöf property and $\sigma $-fragmentability
Fundamenta Mathematicae, Tome 180 (2003) no. 2, pp. 161-183
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In the previous paper, we, together with J. Orihuela, showed that a compact subset $X$ of the product space $[-1,1]^{D}$ is fragmented by the uniform metric if and only if $X$ is Lindelöf with respect to the topology $\gamma (D)$ of uniform convergence on countable subsets of $D$. In the present paper we generalize the previous result to the case where $X$ is $K$-analytic. Stated more precisely, a $K$-analytic subspace $X$ of $[-1,1]^{D}$ is $\sigma $-fragmented by the uniform metric if and only if $(X,\gamma (D))$ is Lindelöf, and if this is the case then $(X,\gamma (D))^{{\mathbb N}}$ is also Lindelöf. We give several applications of this theorem in areas of topology and Banach spaces. We also show by examples that the main theorem cannot be extended to the cases where $X$ is Čech-analytic and Lindelöf or countably $K$-determined.
Keywords:
previous paper together orihuela showed compact subset product space fragmented uniform metric only lindel respect topology gamma uniform convergence countable subsets present paper generalize previous result where k analytic stated precisely k analytic subspace sigma fragmented uniform metric only gamma lindel gamma mathbb lindel several applications theorem areas topology banach spaces examples main theorem cannot extended cases where ech analytic lindel countably k determined
Affiliations des auteurs :
B. Cascales 1 ; I. Namioka 2
@article{10_4064_fm180_2_3,
author = {B. Cascales and I. Namioka},
title = {The {Lindel\"of} property and $\sigma $-fragmentability},
journal = {Fundamenta Mathematicae},
pages = {161--183},
publisher = {mathdoc},
volume = {180},
number = {2},
year = {2003},
doi = {10.4064/fm180-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm180-2-3/}
}
TY - JOUR AU - B. Cascales AU - I. Namioka TI - The Lindelöf property and $\sigma $-fragmentability JO - Fundamenta Mathematicae PY - 2003 SP - 161 EP - 183 VL - 180 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm180-2-3/ DO - 10.4064/fm180-2-3 LA - en ID - 10_4064_fm180_2_3 ER -
B. Cascales; I. Namioka. The Lindelöf property and $\sigma $-fragmentability. Fundamenta Mathematicae, Tome 180 (2003) no. 2, pp. 161-183. doi: 10.4064/fm180-2-3
Cité par Sources :