Minimal component numbers of fixed point sets
Fundamenta Mathematicae, Tome 179 (2003) no. 1, pp. 61-68.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f\colon (X,A)\to (X,A)$ be a relative map of a pair of compact polyhedra. We introduce a new relative homotopy invariant $N^{\rm C}(f;X,A)$, which is a lower bound for the component numbers of fixed point sets of the self-maps in the relative homotopy class of $f$. Some properties of $N^{\rm C}(f;X,A)$ are given, which are very similar to those of the relative Nielsen number $N(f;X,A)$.
DOI : 10.4064/fm179-1-5
Keywords: colon relative map pair compact polyhedra introduce relative homotopy invariant which lower bound component numbers fixed point sets self maps relative homotopy class properties given which similar those relative nielsen number a

Xuezhi Zhao 1

1 Department of Mathematics Capital Normal University Beijing 100037, P.R. China
@article{10_4064_fm179_1_5,
     author = {Xuezhi Zhao},
     title = {Minimal component numbers of
fixed point sets},
     journal = {Fundamenta Mathematicae},
     pages = {61--68},
     publisher = {mathdoc},
     volume = {179},
     number = {1},
     year = {2003},
     doi = {10.4064/fm179-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-1-5/}
}
TY  - JOUR
AU  - Xuezhi Zhao
TI  - Minimal component numbers of
fixed point sets
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 61
EP  - 68
VL  - 179
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm179-1-5/
DO  - 10.4064/fm179-1-5
LA  - en
ID  - 10_4064_fm179_1_5
ER  - 
%0 Journal Article
%A Xuezhi Zhao
%T Minimal component numbers of
fixed point sets
%J Fundamenta Mathematicae
%D 2003
%P 61-68
%V 179
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm179-1-5/
%R 10.4064/fm179-1-5
%G en
%F 10_4064_fm179_1_5
Xuezhi Zhao. Minimal component numbers of
fixed point sets. Fundamenta Mathematicae, Tome 179 (2003) no. 1, pp. 61-68. doi : 10.4064/fm179-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm179-1-5/

Cité par Sources :