Minimal component numbers of
fixed point sets
Fundamenta Mathematicae, Tome 179 (2003) no. 1, pp. 61-68
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $f\colon (X,A)\to (X,A)$ be a relative map of a pair of
compact polyhedra. We introduce a new relative homotopy
invariant $N^{\rm C}(f;X,A)$, which is a lower bound for the component
numbers of fixed point sets of the self-maps in the relative
homotopy class of $f$. Some properties of $N^{\rm C}(f;X,A)$ are
given, which are very similar to those of the relative Nielsen
number $N(f;X,A)$.
Keywords:
colon relative map pair compact polyhedra introduce relative homotopy invariant which lower bound component numbers fixed point sets self maps relative homotopy class properties given which similar those relative nielsen number a
Affiliations des auteurs :
Xuezhi Zhao  1
@article{10_4064_fm179_1_5,
author = {Xuezhi Zhao},
title = {Minimal component numbers of
fixed point sets},
journal = {Fundamenta Mathematicae},
pages = {61--68},
year = {2003},
volume = {179},
number = {1},
doi = {10.4064/fm179-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-1-5/}
}
Xuezhi Zhao. Minimal component numbers of fixed point sets. Fundamenta Mathematicae, Tome 179 (2003) no. 1, pp. 61-68. doi: 10.4064/fm179-1-5
Cité par Sources :