Universal acyclic resolutions for arbitrary coefficient groups
Fundamenta Mathematicae, Tome 178 (2003) no. 2, pp. 159-169
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that for every compactum $X$ and every integer $n \geq 2$ there are a compactum $Z$ of dimension $\leq n+1$ and a surjective $UV^{n-1}$-map $r: Z \to X$ such that for every abelian group $G$ and every integer $k \geq 2$ such that $\mathop
{\rm dim}\nolimits _G X \leq k \leq n$ we have $\mathop {\rm dim}\nolimits _G Z \leq k$ and $r$ is $G$-acyclic.
Keywords:
prove every compactum every integer geq there compactum dimension leq surjective n map every abelian group every integer geq mathop dim nolimits leq leq have mathop dim nolimits leq g acyclic
Affiliations des auteurs :
Michael Levin 1
@article{10_4064_fm178_2_5,
author = {Michael Levin},
title = {Universal acyclic resolutions for arbitrary coefficient groups},
journal = {Fundamenta Mathematicae},
pages = {159--169},
publisher = {mathdoc},
volume = {178},
number = {2},
year = {2003},
doi = {10.4064/fm178-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm178-2-5/}
}
TY - JOUR AU - Michael Levin TI - Universal acyclic resolutions for arbitrary coefficient groups JO - Fundamenta Mathematicae PY - 2003 SP - 159 EP - 169 VL - 178 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm178-2-5/ DO - 10.4064/fm178-2-5 LA - en ID - 10_4064_fm178_2_5 ER -
Michael Levin. Universal acyclic resolutions for arbitrary coefficient groups. Fundamenta Mathematicae, Tome 178 (2003) no. 2, pp. 159-169. doi: 10.4064/fm178-2-5
Cité par Sources :