The index of analytic vector fields and
Newton polyhedra
Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 251-267
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $f:(\mathbb R^n,0)\to (\mathbb R^n,0)$ is an analytic map germ
such that $f^{-1}(0)=\{0\}$ and $f$ satisfies a certain
non-degeneracy condition with respect to a Newton polyhedron
${\mit\Gamma}_+\subseteq\mathbb R^n$, then the index of $f$ only depends on the
principal parts of $f$ with respect to the compact faces of
${\mit\Gamma}_+$. In particular, we obtain a known result on the index
of semi-weighted-homogeneous map germs. We also discuss
non-degenerate vector fields in the sense of Khovanski\u\i and
special applications of our results to planar analytic vector
fields.
Keywords:
prove mathbb mathbb analytic map germ satisfies certain non degeneracy condition respect newton polyhedron mit gamma subseteq mathbb index only depends principal parts respect compact faces mit gamma particular obtain known result index semi weighted homogeneous map germs discuss non degenerate vector fields sense khovanski special applications results planar analytic vector fields
Affiliations des auteurs :
Carles Bivià-Ausina 1
@article{10_4064_fm177_3_5,
author = {Carles Bivi\`a-Ausina},
title = {The index of analytic vector fields and
{Newton} polyhedra},
journal = {Fundamenta Mathematicae},
pages = {251--267},
publisher = {mathdoc},
volume = {177},
number = {3},
year = {2003},
doi = {10.4064/fm177-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-5/}
}
TY - JOUR AU - Carles Bivià-Ausina TI - The index of analytic vector fields and Newton polyhedra JO - Fundamenta Mathematicae PY - 2003 SP - 251 EP - 267 VL - 177 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-5/ DO - 10.4064/fm177-3-5 LA - en ID - 10_4064_fm177_3_5 ER -
Carles Bivià-Ausina. The index of analytic vector fields and Newton polyhedra. Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 251-267. doi: 10.4064/fm177-3-5
Cité par Sources :