Realization and nonrealization of Poincaré duality quotients of ${\Bbb F}_2[x, y]$ as topological spaces
Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 241-250.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\bf d}_{2,0} = x^2y + xy^2,$ ${\bf d}_{2, 1} = x^2 + xy + y^2 \in {\mathbb F}_2[x, y]$ be the two Dickson polynomials. If $a$ and $b$ are positive integers, the ideal $( {\bf d}_{2,0}^a, {\bf d}_{2,1}^b) \subset {\mathbb F}_2[x, y]$ is invariant under the action of the mod $2$ Steenrod algebra ${\scr A}^{\kern 2pt*}$ if and only if when we write $b = 2^t\cdot k$ with $k$ odd, then $a \leq 2^t$. The quotient algebra ${\mathbb F}_2[x, y]/ ( {\bf d}_{2,0}^a, {\bf d}_{2,1}^b)$ is a Poincaré duality algebra and for such $a$ and $b$ admits an unstable action of ${\scr A}^{\kern 2pt*}$. It has trivial Wu classes if and only if $a=2^t$ for some $t \geq 0$ and $b = 2^t(2^s - 1)$ for some $s > 0$. We ask under what conditions on $a$ and $b$, ${\mathbb F}_2[x, y]/( {\bf d}_{2,0}^a, {\bf d}_{2,1}^b)$ appears as the mod $2$ cohomology of a manifold. In this note we show that for $a = 2^t = b$ there is a topological space whose cohomology is ${\mathbb F}_2[x, y]/( {\bf d}_{2,0}^{2^t}, {\bf d}_{2,1}^{2^t})$ if and only if $t = 0, 1, 2,$ or $3$, and in these cases the space may be taken to be a smooth manifold.
DOI : 10.4064/fm177-3-4
Keywords: mathbb dickson polynomials positive integers ideal subset mathbb invariant under action mod steenrod algebra scr kern pt* only write cdot odd leq quotient algebra mathbb poincar duality algebra admits unstable action scr kern pt* has trivial classes only geq ask under what conditions mathbb appears mod cohomology manifold note there topological space whose cohomology mathbb only these cases space may taken smooth manifold

Dagmar M. Meyer 1 ; Larry Smith 1

1 AG-Invariantentheorie Mathematisches Institut Georg-August-Universität D-37073 Göttingen, Germany
@article{10_4064_fm177_3_4,
     author = {Dagmar M. Meyer and Larry Smith},
     title = {Realization and nonrealization of {Poincar\'e} duality
 quotients of ${\Bbb F}_2[x, y]$ as topological spaces},
     journal = {Fundamenta Mathematicae},
     pages = {241--250},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2003},
     doi = {10.4064/fm177-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-4/}
}
TY  - JOUR
AU  - Dagmar M. Meyer
AU  - Larry Smith
TI  - Realization and nonrealization of Poincaré duality
 quotients of ${\Bbb F}_2[x, y]$ as topological spaces
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 241
EP  - 250
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-4/
DO  - 10.4064/fm177-3-4
LA  - en
ID  - 10_4064_fm177_3_4
ER  - 
%0 Journal Article
%A Dagmar M. Meyer
%A Larry Smith
%T Realization and nonrealization of Poincaré duality
 quotients of ${\Bbb F}_2[x, y]$ as topological spaces
%J Fundamenta Mathematicae
%D 2003
%P 241-250
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-4/
%R 10.4064/fm177-3-4
%G en
%F 10_4064_fm177_3_4
Dagmar M. Meyer; Larry Smith. Realization and nonrealization of Poincaré duality
 quotients of ${\Bbb F}_2[x, y]$ as topological spaces. Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 241-250. doi : 10.4064/fm177-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-4/

Cité par Sources :