Borel–Wadge degrees
Fundamenta Mathematicae, Tome 177 (2003) no. 2, pp. 175-192.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Two sets of reals are Borel equivalent if one is the Borel pre-image of the other, and a Borel–Wadge degree is a collection of pairwise Borel equivalent subsets of ${\mathbb R}$. In this note we investigate the structure of Borel–Wadge degrees under the assumption of the Axiom of Determinacy.
DOI : 10.4064/fm177-2-5
Keywords: sets reals borel equivalent borel pre image other borel wadge degree collection pairwise borel equivalent subsets mathbb note investigate structure borel wadge degrees under assumption axiom determinacy

Alessandro Andretta 1 ; Donald A. Martin 2

1 Dipartimento di Matematica Università di Torino via Carlo Alberto 10 10123 Torino, Italy
2 Department of Mathematics University of California at Los Angeles Los Angeles, CA 90095-1555, U.S.A.
@article{10_4064_fm177_2_5,
     author = {Alessandro Andretta and Donald A. Martin},
     title = {Borel{\textendash}Wadge degrees},
     journal = {Fundamenta Mathematicae},
     pages = {175--192},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2003},
     doi = {10.4064/fm177-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-5/}
}
TY  - JOUR
AU  - Alessandro Andretta
AU  - Donald A. Martin
TI  - Borel–Wadge degrees
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 175
EP  - 192
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-5/
DO  - 10.4064/fm177-2-5
LA  - en
ID  - 10_4064_fm177_2_5
ER  - 
%0 Journal Article
%A Alessandro Andretta
%A Donald A. Martin
%T Borel–Wadge degrees
%J Fundamenta Mathematicae
%D 2003
%P 175-192
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-5/
%R 10.4064/fm177-2-5
%G en
%F 10_4064_fm177_2_5
Alessandro Andretta; Donald A. Martin. Borel–Wadge degrees. Fundamenta Mathematicae, Tome 177 (2003) no. 2, pp. 175-192. doi : 10.4064/fm177-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-5/

Cité par Sources :