Separating by $G_{\delta }$-sets in finite powers of $\omega _1$
Fundamenta Mathematicae, Tome 177 (2003) no. 1, pp. 83-94
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is known that all subspaces of $\omega _1^2$ have the property that every pair of disjoint closed sets can be separated by disjoint $G_{\delta } $-sets (see [4]). It has been conjectured that all subspaces of $\omega _1^n$ also have this property for each $n\omega $. We exhibit a subspace of $\{ \langle \alpha ,\beta ,\gamma \rangle \in \omega _1^3:\alpha \leq \beta \leq \gamma \} $ which does not have this property, thus disproving the conjecture. On the other hand, we prove that all subspaces of $\{ \langle \alpha ,\beta ,\gamma \rangle \in \omega _1^3:\alpha \beta \gamma \} $ have this property.
Keywords:
known subspaces omega have property every pair disjoint closed sets separated disjoint delta sets see has conjectured subspaces omega have property each omega exhibit subspace langle alpha beta gamma rangle omega alpha leq beta leq gamma which does have property disproving conjecture other prove subspaces langle alpha beta gamma rangle omega alpha beta gamma have property
Affiliations des auteurs :
Yasushi Hirata 1 ; Nobuyuki Kemoto 2
@article{10_4064_fm177_1_5,
author = {Yasushi Hirata and Nobuyuki Kemoto},
title = {Separating by $G_{\delta }$-sets in finite powers of $\omega _1$},
journal = {Fundamenta Mathematicae},
pages = {83--94},
publisher = {mathdoc},
volume = {177},
number = {1},
year = {2003},
doi = {10.4064/fm177-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-1-5/}
}
TY - JOUR
AU - Yasushi Hirata
AU - Nobuyuki Kemoto
TI - Separating by $G_{\delta }$-sets in finite powers of $\omega _1$
JO - Fundamenta Mathematicae
PY - 2003
SP - 83
EP - 94
VL - 177
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm177-1-5/
DO - 10.4064/fm177-1-5
LA - en
ID - 10_4064_fm177_1_5
ER -
Yasushi Hirata; Nobuyuki Kemoto. Separating by $G_{\delta }$-sets in finite powers of $\omega _1$. Fundamenta Mathematicae, Tome 177 (2003) no. 1, pp. 83-94. doi: 10.4064/fm177-1-5
Cité par Sources :