On admissibility for parabolic equations in ${\Bbb R}^n$
Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 261-275
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the parabolic equation $$ u_t-{\mit \Delta } u=F(x,u),
\hskip 1em \ (t,x)\in {{\mathbb R}}_+\times {{\mathbb R}}^n,
\tag{P} $$ and the corresponding semiflow $\pi $ in the phase space $H^1$. We give conditions on the nonlinearity $F(x,u)$, ensuring that all bounded sets of $H^1$ are $\pi $-admissible in the sense of Rybakowski. If $F(x,u)$ is asymptotically linear, under appropriate non-resonance conditions, we use Conley's index theory to prove the existence of nontrivial equilibria of (P) and of heteroclinic trajectories joining some of these equilibria. The results obtained extend earlier results of Rybakowski concerning parabolic equations on
bounded open subsets of ${{\mathbb R}}^n$.
Keywords:
consider parabolic equation t mit delta u hskip mathbb times mathbb tag corresponding semiflow phase space conditions nonlinearity ensuring bounded sets admissible sense rybakowski asymptotically linear under appropriate non resonance conditions conleys index theory prove existence nontrivial equilibria heteroclinic trajectories joining these equilibria results obtained extend earlier results rybakowski concerning parabolic equations bounded subsets mathbb
Affiliations des auteurs :
Martino Prizzi 1
@article{10_4064_fm176_3_5,
author = {Martino Prizzi},
title = {On admissibility for parabolic equations in ${\Bbb R}^n$},
journal = {Fundamenta Mathematicae},
pages = {261--275},
publisher = {mathdoc},
volume = {176},
number = {3},
year = {2003},
doi = {10.4064/fm176-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-5/}
}
Martino Prizzi. On admissibility for parabolic equations in ${\Bbb R}^n$. Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 261-275. doi: 10.4064/fm176-3-5
Cité par Sources :