On admissibility for parabolic equations in ${\Bbb R}^n$
Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 261-275.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the parabolic equation $$ u_t-{\mit \Delta } u=F(x,u), \hskip 1em \ (t,x)\in {{\mathbb R}}_+\times {{\mathbb R}}^n, \tag{P} $$ and the corresponding semiflow $\pi $ in the phase space $H^1$. We give conditions on the nonlinearity $F(x,u)$, ensuring that all bounded sets of $H^1$ are $\pi $-admissible in the sense of Rybakowski. If $F(x,u)$ is asymptotically linear, under appropriate non-resonance conditions, we use Conley's index theory to prove the existence of nontrivial equilibria of (P) and of heteroclinic trajectories joining some of these equilibria. The results obtained extend earlier results of Rybakowski concerning parabolic equations on bounded open subsets of ${{\mathbb R}}^n$.
DOI : 10.4064/fm176-3-5
Keywords: consider parabolic equation t mit delta u hskip mathbb times mathbb tag corresponding semiflow phase space conditions nonlinearity ensuring bounded sets admissible sense rybakowski asymptotically linear under appropriate non resonance conditions conleys index theory prove existence nontrivial equilibria heteroclinic trajectories joining these equilibria results obtained extend earlier results rybakowski concerning parabolic equations bounded subsets mathbb

Martino Prizzi 1

1 Dipartimento di Scienze Matematiche Università degli Studi di Trieste via Valerio 12 34127 Trieste, Italy
@article{10_4064_fm176_3_5,
     author = {Martino Prizzi},
     title = {On admissibility for parabolic equations in ${\Bbb R}^n$},
     journal = {Fundamenta Mathematicae},
     pages = {261--275},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2003},
     doi = {10.4064/fm176-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-5/}
}
TY  - JOUR
AU  - Martino Prizzi
TI  - On admissibility for parabolic equations in ${\Bbb R}^n$
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 261
EP  - 275
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-5/
DO  - 10.4064/fm176-3-5
LA  - en
ID  - 10_4064_fm176_3_5
ER  - 
%0 Journal Article
%A Martino Prizzi
%T On admissibility for parabolic equations in ${\Bbb R}^n$
%J Fundamenta Mathematicae
%D 2003
%P 261-275
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-5/
%R 10.4064/fm176-3-5
%G en
%F 10_4064_fm176_3_5
Martino Prizzi. On admissibility for parabolic equations in ${\Bbb R}^n$. Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 261-275. doi : 10.4064/fm176-3-5. http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-5/

Cité par Sources :