Recognizing dualizing complexes
Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 251-259.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A$ be a noetherian local commutative ring and let $M$ be a suitable complex of $A$-modules. It is proved that $M$ is a dualizing complex for $A$ if and only if the trivial extension $A \ltimes M$ is a Gorenstein differential graded algebra. As a corollary, $A$ has a dualizing complex if and only if it is a quotient of a Gorenstein local differential graded algebra.
DOI : 10.4064/fm176-3-4
Keywords: noetherian local commutative ring suitable complex a modules proved dualizing complex only trivial extension ltimes gorenstein differential graded algebra corollary has dualizing complex only quotient gorenstein local differential graded algebra

Peter Jørgensen 1

1 Danish National Library of Science and Medicine Nørre Allé 49 2200 København N, DK-Denmark
@article{10_4064_fm176_3_4,
     author = {Peter J{\o}rgensen},
     title = {Recognizing dualizing complexes},
     journal = {Fundamenta Mathematicae},
     pages = {251--259},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2003},
     doi = {10.4064/fm176-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-4/}
}
TY  - JOUR
AU  - Peter Jørgensen
TI  - Recognizing dualizing complexes
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 251
EP  - 259
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-4/
DO  - 10.4064/fm176-3-4
LA  - en
ID  - 10_4064_fm176_3_4
ER  - 
%0 Journal Article
%A Peter Jørgensen
%T Recognizing dualizing complexes
%J Fundamenta Mathematicae
%D 2003
%P 251-259
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-4/
%R 10.4064/fm176-3-4
%G en
%F 10_4064_fm176_3_4
Peter Jørgensen. Recognizing dualizing complexes. Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 251-259. doi : 10.4064/fm176-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-4/

Cité par Sources :