Recognizing dualizing complexes
Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 251-259
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A$ be a noetherian local commutative ring and let $M$ be a suitable complex of $A$-modules. It is proved that $M$ is a dualizing complex for $A$ if and only if the trivial extension $A \ltimes M$ is a Gorenstein differential graded algebra. As a corollary, $A$ has a dualizing complex if and only if it is a quotient of a Gorenstein local differential graded algebra.
Keywords:
noetherian local commutative ring suitable complex a modules proved dualizing complex only trivial extension ltimes gorenstein differential graded algebra corollary has dualizing complex only quotient gorenstein local differential graded algebra
Affiliations des auteurs :
Peter Jørgensen 1
@article{10_4064_fm176_3_4,
author = {Peter J{\o}rgensen},
title = {Recognizing dualizing complexes},
journal = {Fundamenta Mathematicae},
pages = {251--259},
publisher = {mathdoc},
volume = {176},
number = {3},
year = {2003},
doi = {10.4064/fm176-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-4/}
}
Peter Jørgensen. Recognizing dualizing complexes. Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 251-259. doi: 10.4064/fm176-3-4
Cité par Sources :