Two results on special points
Fundamenta Mathematicae, Tome 176 (2003) no. 2, pp. 171-179.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that there is a nowhere ccc $\sigma $-compact space which has a remote point. We show that it is consistent to have a non-compact $\sigma $-compact separable space $X$ such that every point of the remainder is a limit of a countable discrete subset of non-isolated points of $X$. This example shows that one cannot prove in ZFC that every locally compact non-compact space has discrete weak $P$-points.
DOI : 10.4064/fm176-2-5
Keywords: there nowhere ccc sigma compact space which has remote point consistent have non compact sigma compact separable space every point remainder limit countable discrete subset non isolated points example shows cannot prove zfc every locally compact non compact space has discrete weak p points

Alan Dow 1

1 Department of Mathematics University of North Carolina at Charlotte 9201 University City Boulevard Charlotte, NC 28262-001, U.S.A.
@article{10_4064_fm176_2_5,
     author = {Alan Dow},
     title = {Two results on special points},
     journal = {Fundamenta Mathematicae},
     pages = {171--179},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2003},
     doi = {10.4064/fm176-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-5/}
}
TY  - JOUR
AU  - Alan Dow
TI  - Two results on special points
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 171
EP  - 179
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-5/
DO  - 10.4064/fm176-2-5
LA  - en
ID  - 10_4064_fm176_2_5
ER  - 
%0 Journal Article
%A Alan Dow
%T Two results on special points
%J Fundamenta Mathematicae
%D 2003
%P 171-179
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-5/
%R 10.4064/fm176-2-5
%G en
%F 10_4064_fm176_2_5
Alan Dow. Two results on special points. Fundamenta Mathematicae, Tome 176 (2003) no. 2, pp. 171-179. doi : 10.4064/fm176-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-5/

Cité par Sources :