Separating sets by Darboux-like functions
Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 271-283.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the following problem: Characterize the pairs $\langle A, B \rangle$ of subsets of ${\mathbb R}$ which can be separated by a function from a given class, i.e., for which there exists a function $f$ from that class such that $f=0$ on $A$ and $f=1$ on $B$ (the classical separation property) or $f0$ on $A$ and $f>0$ on $B$ (a new separation property).
DOI : 10.4064/fm175-3-4
Keywords: consider following problem characterize pairs langle rangle subsets nbsp mathbb which separated function given class which there exists function nbsp class nbsp nbsp classical separation property nbsp nbsp separation property

Aleksander Maliszewski 1

1 Department of Mathematics Bydgoszcz Academy Pl. Weyssenhoffa 11 85-072 Bydgoszcz, Poland
@article{10_4064_fm175_3_4,
     author = {Aleksander Maliszewski},
     title = {Separating sets by {Darboux-like} functions},
     journal = {Fundamenta Mathematicae},
     pages = {271--283},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2002},
     doi = {10.4064/fm175-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-4/}
}
TY  - JOUR
AU  - Aleksander Maliszewski
TI  - Separating sets by Darboux-like functions
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 271
EP  - 283
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-4/
DO  - 10.4064/fm175-3-4
LA  - en
ID  - 10_4064_fm175_3_4
ER  - 
%0 Journal Article
%A Aleksander Maliszewski
%T Separating sets by Darboux-like functions
%J Fundamenta Mathematicae
%D 2002
%P 271-283
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-4/
%R 10.4064/fm175-3-4
%G en
%F 10_4064_fm175_3_4
Aleksander Maliszewski. Separating sets by Darboux-like functions. Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 271-283. doi : 10.4064/fm175-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-4/

Cité par Sources :