Separating sets by Darboux-like functions
Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 271-283
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the following problem: Characterize the pairs
$\langle A, B \rangle$ of subsets of ${\mathbb R}$ which can be separated
by a function from a given class, i.e., for which there exists a
function $f$ from that class such that $f=0$ on $A$ and $f=1$
on $B$ (the classical separation property) or $f0$ on $A$ and
$f>0$ on $B$ (a new separation property).
Keywords:
consider following problem characterize pairs langle rangle subsets nbsp mathbb which separated function given class which there exists function nbsp class nbsp nbsp classical separation property nbsp nbsp separation property
Affiliations des auteurs :
Aleksander Maliszewski 1
@article{10_4064_fm175_3_4,
author = {Aleksander Maliszewski},
title = {Separating sets by {Darboux-like} functions},
journal = {Fundamenta Mathematicae},
pages = {271--283},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2002},
doi = {10.4064/fm175-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-4/}
}
Aleksander Maliszewski. Separating sets by Darboux-like functions. Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 271-283. doi: 10.4064/fm175-3-4
Cité par Sources :