An irrational problem
Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 259-269
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a topological space $\langle X , {\cal T}\rangle \in M$,
an elementary submodel of set theory, we
define $X_M$ to be $X\cap M$ with topology generated
by $\{ U \cap M : U \in {\cal T} \cap M \}$.
Suppose $X_M$ is homeomorphic to the irrationals;
must $X=X_M$? We have partial results.
We also answer a question of Gruenhage by showing that
if $X_M$ is homeomorphic to the “Long Cantor Set”,
then $X= X_M$.
Keywords:
given topological space langle cal rangle elementary submodel set theory define cap topology generated cap cal cap suppose homeomorphic irrationals have partial results answer question gruenhage showing homeomorphic long cantor set
Affiliations des auteurs :
Franklin D. Tall 1
@article{10_4064_fm175_3_3,
author = {Franklin D. Tall},
title = {An irrational problem},
journal = {Fundamenta Mathematicae},
pages = {259--269},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2002},
doi = {10.4064/fm175-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-3/}
}
Franklin D. Tall. An irrational problem. Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 259-269. doi: 10.4064/fm175-3-3
Cité par Sources :