More on the Ehrenfeucht–Fraisse game of length $\omega _1$
Fundamenta Mathematicae, Tome 175 (2002) no. 1, pp. 79-96.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

By results of [9] there are models ${\frak A}$ and ${\frak B}$ for which the Ehrenfeucht–Fraïssé game of length $\omega _1$, ${\rm EFG}_{\omega _1}({\frak A},{\frak B})$, is non-determined, but it is consistent relative to the consistency of a measurable cardinal that no such models have cardinality $\le \aleph _2$. We now improve the work of [9] in two ways. Firstly, we prove that the consistency strength of the statement “CH and ${\rm EFG}_{\omega _1}({\frak A},{\frak B})$ is determined for all models ${\frak A}$ and ${\frak B}$ of cardinality $\aleph _2$” is that of a weakly compact cardinal. On the other hand, we show that if $2^{\aleph _0}2^{\aleph _{3}}$, $T$ is a countable complete first order theory, and one of (i) $T$ is unstable, (ii) $T$ is superstable with DOP or OTOP, (iii) $T$ is stable and unsuperstable and $2^{\aleph _0}\le \aleph _{3}$, holds, then there are ${\cal A},{\cal B}\mathrel |\mathrel {\mkern -3mu}=T$ of power $\aleph _{3}$ such that ${\rm EFG}_{\omega _{1}}({\cal A},{\cal B})$ is non-determined.
DOI : 10.4064/fm175-1-5
Keywords: results there models frak frak which ehrenfeucht fra game length omega efg omega frak frak non determined consistent relative consistency measurable cardinal models have cardinality aleph improve work ways firstly prove consistency strength statement efg omega frak frak determined models frak frak cardinality aleph weakly compact cardinal other aleph aleph countable complete first order theory unstable superstable dop otop iii stable unsuperstable aleph aleph holds there cal cal mathrel mathrel mkern power aleph efg omega cal cal non determined

Tapani Hyttinen 1 ; Saharon Shelah 2 ; Jouko Vaananen 1

1 Department of Mathematics P.O. Box 4 (Yliopistonkatu 5) 00014 University of Helsinki, Finland
2 Einstein Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel and Deparment of Mathematics Rutgers University New Brunswick, NJ 08903, U.S.A.
@article{10_4064_fm175_1_5,
     author = {Tapani Hyttinen and Saharon Shelah and Jouko Vaananen},
     title = {More on the {Ehrenfeucht{\textendash}Fraisse} game of length $\omega _1$},
     journal = {Fundamenta Mathematicae},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2002},
     doi = {10.4064/fm175-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-5/}
}
TY  - JOUR
AU  - Tapani Hyttinen
AU  - Saharon Shelah
AU  - Jouko Vaananen
TI  - More on the Ehrenfeucht–Fraisse game of length $\omega _1$
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 79
EP  - 96
VL  - 175
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-5/
DO  - 10.4064/fm175-1-5
LA  - en
ID  - 10_4064_fm175_1_5
ER  - 
%0 Journal Article
%A Tapani Hyttinen
%A Saharon Shelah
%A Jouko Vaananen
%T More on the Ehrenfeucht–Fraisse game of length $\omega _1$
%J Fundamenta Mathematicae
%D 2002
%P 79-96
%V 175
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-5/
%R 10.4064/fm175-1-5
%G en
%F 10_4064_fm175_1_5
Tapani Hyttinen; Saharon Shelah; Jouko Vaananen. More on the Ehrenfeucht–Fraisse game of length $\omega _1$. Fundamenta Mathematicae, Tome 175 (2002) no. 1, pp. 79-96. doi : 10.4064/fm175-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-5/

Cité par Sources :