On dimensionally restricted maps
Fundamenta Mathematicae, Tome 175 (2002) no. 1, pp. 35-52
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f : X\to Y$ be a closed $n$-dimensional surjective map of metrizable spaces. It is shown that if $Y$ is a $C$-space, then: (1) the set of all maps $g : X\to {\mathbb I}^n$ with $\mathop {\rm dim}\nolimits (f\mathbin {\triangle }g)=0$ is uniformly dense in $C(X,{\mathbb I}^n)$; (2) for every $0\leq k\leq n-1$ there exists an $F_{\sigma }$-subset $A_k$ of $X$ such that $\mathop {\rm dim}\nolimits A_k\leq k$ and the restriction $f|(X \setminus A_k)$ is $(n-k-1)$-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij about extensional dimension is also established.
Keywords:
closed n dimensional surjective map metrizable spaces shown c space set maps mathbb mathop dim nolimits mathbin triangle uniformly dense mathbb every leq leq n there exists sigma subset mathop dim nolimits leq restriction setminus n k dimensional these extensions theorems pasynkov toru czyk respectively obtained finite dimensional spaces generalization result due dranishnikov uspenskij about extensional dimension established
Affiliations des auteurs :
H. Murat Tuncali 1 ; Vesko Valov 1
@article{10_4064_fm175_1_2,
author = {H. Murat Tuncali and Vesko Valov},
title = {On dimensionally restricted maps},
journal = {Fundamenta Mathematicae},
pages = {35--52},
publisher = {mathdoc},
volume = {175},
number = {1},
year = {2002},
doi = {10.4064/fm175-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-2/}
}
H. Murat Tuncali; Vesko Valov. On dimensionally restricted maps. Fundamenta Mathematicae, Tome 175 (2002) no. 1, pp. 35-52. doi: 10.4064/fm175-1-2
Cité par Sources :