On dimensionally restricted maps
Fundamenta Mathematicae, Tome 175 (2002) no. 1, pp. 35-52.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f : X\to Y$ be a closed $n$-dimensional surjective map of metrizable spaces. It is shown that if $Y$ is a $C$-space, then: (1) the set of all maps $g : X\to {\mathbb I}^n$ with $\mathop {\rm dim}\nolimits (f\mathbin {\triangle }g)=0$ is uniformly dense in $C(X,{\mathbb I}^n)$; (2) for every $0\leq k\leq n-1$ there exists an $F_{\sigma }$-subset $A_k$ of $X$ such that $\mathop {\rm dim}\nolimits A_k\leq k$ and the restriction $f|(X \setminus A_k)$ is $(n-k-1)$-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij about extensional dimension is also established.
DOI : 10.4064/fm175-1-2
Keywords: closed n dimensional surjective map metrizable spaces shown c space set maps mathbb mathop dim nolimits mathbin triangle uniformly dense mathbb every leq leq n there exists sigma subset mathop dim nolimits leq restriction setminus n k dimensional these extensions theorems pasynkov toru czyk respectively obtained finite dimensional spaces generalization result due dranishnikov uspenskij about extensional dimension established

H. Murat Tuncali 1 ; Vesko Valov 1

1 Department of Mathematics Nipissing University 100 College Drive P.O. Box 5002 North Bay, ON, P1B 8L7, Canada
@article{10_4064_fm175_1_2,
     author = {H. Murat Tuncali and Vesko Valov},
     title = {On dimensionally restricted maps},
     journal = {Fundamenta Mathematicae},
     pages = {35--52},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2002},
     doi = {10.4064/fm175-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-2/}
}
TY  - JOUR
AU  - H. Murat Tuncali
AU  - Vesko Valov
TI  - On dimensionally restricted maps
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 35
EP  - 52
VL  - 175
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-2/
DO  - 10.4064/fm175-1-2
LA  - en
ID  - 10_4064_fm175_1_2
ER  - 
%0 Journal Article
%A H. Murat Tuncali
%A Vesko Valov
%T On dimensionally restricted maps
%J Fundamenta Mathematicae
%D 2002
%P 35-52
%V 175
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-2/
%R 10.4064/fm175-1-2
%G en
%F 10_4064_fm175_1_2
H. Murat Tuncali; Vesko Valov. On dimensionally restricted maps. Fundamenta Mathematicae, Tome 175 (2002) no. 1, pp. 35-52. doi : 10.4064/fm175-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-2/

Cité par Sources :