$N$-determined $p$-compact groups
Fundamenta Mathematicae, Tome 173 (2002) no. 3, pp. 201-300.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

One of the major problems in the homotopy theory of finite loop spaces is the classification problem for $p$-compact groups. It has been proposed to use the maximal torus normalizer (which at an odd prime essentially means the Weyl group) as the distinguishing invariant. We show here that the maximal torus normalizer does indeed classify many $p$-compact groups up to isomorphism when $p$ is an odd prime.
DOI : 10.4064/fm173-3-1
Keywords: major problems homotopy theory finite loop spaces classification problem p compact groups has proposed maximal torus normalizer which odd prime essentially means weyl group distinguishing invariant here maximal torus normalizer does indeed classify many p compact groups isomorphism odd prime

Jesper M. Møller 1

1 Matematisk Institut Universitetsparken 5 DK-2100 København, Denmark
@article{10_4064_fm173_3_1,
     author = {Jesper M. M{\o}ller},
     title = {$N$-determined $p$-compact groups},
     journal = {Fundamenta Mathematicae},
     pages = {201--300},
     publisher = {mathdoc},
     volume = {173},
     number = {3},
     year = {2002},
     doi = {10.4064/fm173-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm173-3-1/}
}
TY  - JOUR
AU  - Jesper M. Møller
TI  - $N$-determined $p$-compact groups
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 201
EP  - 300
VL  - 173
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm173-3-1/
DO  - 10.4064/fm173-3-1
LA  - en
ID  - 10_4064_fm173_3_1
ER  - 
%0 Journal Article
%A Jesper M. Møller
%T $N$-determined $p$-compact groups
%J Fundamenta Mathematicae
%D 2002
%P 201-300
%V 173
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm173-3-1/
%R 10.4064/fm173-3-1
%G en
%F 10_4064_fm173_3_1
Jesper M. Møller. $N$-determined $p$-compact groups. Fundamenta Mathematicae, Tome 173 (2002) no. 3, pp. 201-300. doi : 10.4064/fm173-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm173-3-1/

Cité par Sources :