Herbrand consistency and bounded arithmetic
Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 279-292.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the Gödel incompleteness theorem holds for a weak arithmetic $T_m=I \Delta _0+ \Omega _m$, for $m\ge 2$, in the form $T_m\not \vdash {\rm HCons}(T_m)$, where ${\rm HCons}(T_m)$ is an arithmetic formula expressing the consistency of $T_m$ with respect to the Herbrand notion of provability. Moreover, we prove $T_m\not \vdash {\rm HCons}^{I_m}(T_m)$, where ${\rm HCons}^{I_m}$ is ${\rm HCons}$ relativised to the definable cut $I_m$ of $(m-2)$-times iterated logarithms. The proof is model-theoretic. We also prove a certain non-conservation result for $T_m$.
DOI : 10.4064/fm171-3-7
Keywords: prove del incompleteness theorem holds weak arithmetic delta omega form vdash hcons where hcons arithmetic formula expressing consistency respect herbrand notion provability moreover prove vdash hcons where hcons hcons relativised definable cut m times iterated logarithms proof model theoretic prove certain non conservation result

Zofia Adamowicz 1

1 Institute of Mathematics Polish Academy of Sciences /Sniadeckich 8 00-950 Warszawa, Poland
@article{10_4064_fm171_3_7,
     author = {Zofia Adamowicz},
     title = {Herbrand consistency and bounded arithmetic},
     journal = {Fundamenta Mathematicae},
     pages = {279--292},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2002},
     doi = {10.4064/fm171-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-7/}
}
TY  - JOUR
AU  - Zofia Adamowicz
TI  - Herbrand consistency and bounded arithmetic
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 279
EP  - 292
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-7/
DO  - 10.4064/fm171-3-7
LA  - en
ID  - 10_4064_fm171_3_7
ER  - 
%0 Journal Article
%A Zofia Adamowicz
%T Herbrand consistency and bounded arithmetic
%J Fundamenta Mathematicae
%D 2002
%P 279-292
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-7/
%R 10.4064/fm171-3-7
%G en
%F 10_4064_fm171_3_7
Zofia Adamowicz. Herbrand consistency and bounded arithmetic. Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 279-292. doi : 10.4064/fm171-3-7. http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-7/

Cité par Sources :