Borsuk–Sieklucki theorem in
cohomological dimension theory
Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 213-222
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Borsuk–Sieklucki theorem says that
for every uncountable family $\{X_{\alpha}\}_{\alpha \in A}$
of $n$-dimensional closed subsets of
an $n$-dimensional ANR-compactum, there exist $\alpha \ne \beta$
such that $\mathop{\rm dim} (X_{\alpha} \cap X_{\beta}) = n$.
In this paper we show a cohomological version of that theorem:Theorem.
Suppose a compactum $X$ is ${\rm clc}^{n+1}_{{\Bbb Z}}$,
where $n\geq 1$, and $G$
is an Abelian group. Let $
\{X_{\alpha }\}_{\alpha \in J}$ be an uncountable family of closed subsets
of $X$. If ${\rm dim} _GX={\rm dim} _GX_{\alpha }=n$ for all $
\alpha \in J$, then $\mathop{\rm dim} _G(X_{\alpha }\cap X_{\beta })=n$ for some
$\alpha \neq \beta$.For $G$ being a countable principal ideal domain the above result
was proved by
Choi and Kozlowski [C-K]. Independently,
Dydak and Koyama [D-K] proved it for $G$ being an arbitrary principal
ideal domain
and posed the question of validity of the Theorem for quasicyclic groups
(see Problem~1 in [D-K]).As applications of the Theorem
we investigate equality of cohomological dimension
and strong cohomological dimension, and
give a characterization of cohomological dimension in terms of a special base.
Keywords:
borsuk sieklucki theorem says every uncountable family alpha alpha n dimensional closed subsets n dimensional anr compactum there exist alpha beta mathop dim alpha cap beta paper cohomological version theorem theorem suppose compactum clc bbb where geq abelian group alpha alpha uncountable family closed subsets dim dim alpha alpha mathop dim alpha cap beta alpha neq beta being countable principal ideal domain above result proved choi kozlowski c k independently dydak koyama d k proved being arbitrary principal ideal domain posed question validity theorem quasicyclic groups see problem d k applications theorem investigate equality cohomological dimension strong cohomological dimension characterization cohomological dimension terms special base
Affiliations des auteurs :
Margareta Boege 1 ; Jerzy Dydak 2 ; Rolando Jiménez 1 ; Akira Koyama 3 ; Evgeny V. Shchepin 4
@article{10_4064_fm171_3_2,
author = {Margareta Boege and Jerzy Dydak and Rolando Jim\'enez and Akira Koyama and Evgeny V. Shchepin},
title = {Borsuk{\textendash}Sieklucki theorem in
cohomological dimension theory},
journal = {Fundamenta Mathematicae},
pages = {213--222},
publisher = {mathdoc},
volume = {171},
number = {3},
year = {2002},
doi = {10.4064/fm171-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-2/}
}
TY - JOUR AU - Margareta Boege AU - Jerzy Dydak AU - Rolando Jiménez AU - Akira Koyama AU - Evgeny V. Shchepin TI - Borsuk–Sieklucki theorem in cohomological dimension theory JO - Fundamenta Mathematicae PY - 2002 SP - 213 EP - 222 VL - 171 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-2/ DO - 10.4064/fm171-3-2 LA - en ID - 10_4064_fm171_3_2 ER -
%0 Journal Article %A Margareta Boege %A Jerzy Dydak %A Rolando Jiménez %A Akira Koyama %A Evgeny V. Shchepin %T Borsuk–Sieklucki theorem in cohomological dimension theory %J Fundamenta Mathematicae %D 2002 %P 213-222 %V 171 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-2/ %R 10.4064/fm171-3-2 %G en %F 10_4064_fm171_3_2
Margareta Boege; Jerzy Dydak; Rolando Jiménez; Akira Koyama; Evgeny V. Shchepin. Borsuk–Sieklucki theorem in cohomological dimension theory. Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 213-222. doi: 10.4064/fm171-3-2
Cité par Sources :