Borsuk–Sieklucki theorem in cohomological dimension theory
Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 213-222.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Borsuk–Sieklucki theorem says that for every uncountable family $\{X_{\alpha}\}_{\alpha \in A}$ of $n$-dimensional closed subsets of an $n$-dimensional ANR-compactum, there exist $\alpha \ne \beta$ such that $\mathop{\rm dim} (X_{\alpha} \cap X_{\beta}) = n$. In this paper we show a cohomological version of that theorem:Theorem. Suppose a compactum $X$ is ${\rm clc}^{n+1}_{{\Bbb Z}}$, where $n\geq 1$, and $G$ is an Abelian group. Let $ \{X_{\alpha }\}_{\alpha \in J}$ be an uncountable family of closed subsets of $X$. If ${\rm dim} _GX={\rm dim} _GX_{\alpha }=n$ for all $ \alpha \in J$, then $\mathop{\rm dim} _G(X_{\alpha }\cap X_{\beta })=n$ for some $\alpha \neq \beta$.For $G$ being a countable principal ideal domain the above result was proved by Choi and Kozlowski [C-K]. Independently, Dydak and Koyama [D-K] proved it for $G$ being an arbitrary principal ideal domain and posed the question of validity of the Theorem for quasicyclic groups (see Problem~1 in [D-K]).As applications of the Theorem we investigate equality of cohomological dimension and strong cohomological dimension, and give a characterization of cohomological dimension in terms of a special base.
DOI : 10.4064/fm171-3-2
Keywords: borsuk sieklucki theorem says every uncountable family alpha alpha n dimensional closed subsets n dimensional anr compactum there exist alpha beta mathop dim alpha cap beta paper cohomological version theorem theorem suppose compactum clc bbb where geq abelian group alpha alpha uncountable family closed subsets dim dim alpha alpha mathop dim alpha cap beta alpha neq beta being countable principal ideal domain above result proved choi kozlowski c k independently dydak koyama d k proved being arbitrary principal ideal domain posed question validity theorem quasicyclic groups see problem d k applications theorem investigate equality cohomological dimension strong cohomological dimension characterization cohomological dimension terms special base

Margareta Boege 1 ; Jerzy Dydak 2 ; Rolando Jiménez 1 ; Akira Koyama 3 ; Evgeny V. Shchepin 4

1 Instituto de Matemáticas UNAM Av. Universidad S//N, Col. Lomas de Chamilpa 62210 Cuernavaca, Morelos, México
2 Department of Mathematics University of Tennessee Knoxville, TN 37996, U.S.A.
3 Division of Mathematical Sciences Osaka Kyoiku University Kashiwara, Osaka 582-8582, Japan
4 Steklov Institute of Mathematics Gubkina 8 117966 Moscow GSP-1, Russia
@article{10_4064_fm171_3_2,
     author = {Margareta Boege and Jerzy Dydak and Rolando Jim\'enez and Akira Koyama and Evgeny V. Shchepin},
     title = {Borsuk{\textendash}Sieklucki theorem in
 cohomological dimension theory},
     journal = {Fundamenta Mathematicae},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2002},
     doi = {10.4064/fm171-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-2/}
}
TY  - JOUR
AU  - Margareta Boege
AU  - Jerzy Dydak
AU  - Rolando Jiménez
AU  - Akira Koyama
AU  - Evgeny V. Shchepin
TI  - Borsuk–Sieklucki theorem in
 cohomological dimension theory
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 213
EP  - 222
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-2/
DO  - 10.4064/fm171-3-2
LA  - en
ID  - 10_4064_fm171_3_2
ER  - 
%0 Journal Article
%A Margareta Boege
%A Jerzy Dydak
%A Rolando Jiménez
%A Akira Koyama
%A Evgeny V. Shchepin
%T Borsuk–Sieklucki theorem in
 cohomological dimension theory
%J Fundamenta Mathematicae
%D 2002
%P 213-222
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-2/
%R 10.4064/fm171-3-2
%G en
%F 10_4064_fm171_3_2
Margareta Boege; Jerzy Dydak; Rolando Jiménez; Akira Koyama; Evgeny V. Shchepin. Borsuk–Sieklucki theorem in
 cohomological dimension theory. Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 213-222. doi : 10.4064/fm171-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-2/

Cité par Sources :