On an analytic approach to the Fatou conjecture
Fundamenta Mathematicae, Tome 171 (2002) no. 2, pp. 177-196.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f$ be a quadratic map (more generally, $f(z)=z^d+c$, $d>1$) of the complex plane. We give sufficient conditions for $f$ to have no measurable invariant linefields on its Julia set. We also prove that if the series $\sum _{n\ge 0} {1/(f^n)'(c)}$ converges absolutely, then its sum is non-zero. In the proof we use analytic tools, such as integral and transfer (Ruelle-type) operators and approximation theorems.
DOI : 10.4064/fm171-2-5
Keywords: quadratic map generally complex plane sufficient conditions have measurable invariant linefields its julia set prove series sum converges absolutely its sum non zero proof analytic tools integral transfer ruelle type operators approximation theorems

Genadi Levin 1

1 Institute of Mathematics The Hebrew University Givat Ram 91904, Jerusalem, Israel
@article{10_4064_fm171_2_5,
     author = {Genadi Levin},
     title = {On an analytic approach to the {Fatou} conjecture},
     journal = {Fundamenta Mathematicae},
     pages = {177--196},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2002},
     doi = {10.4064/fm171-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-5/}
}
TY  - JOUR
AU  - Genadi Levin
TI  - On an analytic approach to the Fatou conjecture
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 177
EP  - 196
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-5/
DO  - 10.4064/fm171-2-5
LA  - en
ID  - 10_4064_fm171_2_5
ER  - 
%0 Journal Article
%A Genadi Levin
%T On an analytic approach to the Fatou conjecture
%J Fundamenta Mathematicae
%D 2002
%P 177-196
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-5/
%R 10.4064/fm171-2-5
%G en
%F 10_4064_fm171_2_5
Genadi Levin. On an analytic approach to the Fatou conjecture. Fundamenta Mathematicae, Tome 171 (2002) no. 2, pp. 177-196. doi : 10.4064/fm171-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-5/

Cité par Sources :