The splitting number can be smaller than the
matrix chaos number
Fundamenta Mathematicae, Tome 171 (2002) no. 2, pp. 167-176
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\chi $ be the minimum cardinality of a subset of ${}^\omega 2$ that cannot be made convergent by multiplication with a single Toeplitz matrix. By an application of a creature forcing we show that ${\frak s} \chi $ is consistent. We thus answer a question by Vojtáš. We give two kinds of models for the strict inequality. The first is the combination of an $\aleph _2$-iteration of some proper forcing with adding $\aleph _1$ random reals. The second kind of models is obtained by adding $\delta $ random reals to a model of $
{\rm MA}_{\kappa }$ for some $\delta \in [\aleph _1,\kappa )$. It was a conjecture of Blass that ${\frak s}=\aleph _1 \chi = \kappa $ holds in such a model. For the analysis of the second model we again use the creature forcing from the first model.
Keywords:
chi minimum cardinality subset omega cannot made convergent multiplication single toeplitz matrix application creature forcing frak chi consistent answer question vojt kinds models strict inequality first combination aleph iteration proper forcing adding aleph random reals second kind models obtained adding delta random reals model kappa delta aleph kappa conjecture blass frak aleph chi kappa holds model analysis second model again creature forcing first model
Affiliations des auteurs :
Heike Mildenberger 1 ; Saharon Shelah 2
@article{10_4064_fm171_2_4,
author = {Heike Mildenberger and Saharon Shelah},
title = {The splitting number can be smaller than the
matrix chaos number},
journal = {Fundamenta Mathematicae},
pages = {167--176},
publisher = {mathdoc},
volume = {171},
number = {2},
year = {2002},
doi = {10.4064/fm171-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-4/}
}
TY - JOUR AU - Heike Mildenberger AU - Saharon Shelah TI - The splitting number can be smaller than the matrix chaos number JO - Fundamenta Mathematicae PY - 2002 SP - 167 EP - 176 VL - 171 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-4/ DO - 10.4064/fm171-2-4 LA - en ID - 10_4064_fm171_2_4 ER -
%0 Journal Article %A Heike Mildenberger %A Saharon Shelah %T The splitting number can be smaller than the matrix chaos number %J Fundamenta Mathematicae %D 2002 %P 167-176 %V 171 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-4/ %R 10.4064/fm171-2-4 %G en %F 10_4064_fm171_2_4
Heike Mildenberger; Saharon Shelah. The splitting number can be smaller than the matrix chaos number. Fundamenta Mathematicae, Tome 171 (2002) no. 2, pp. 167-176. doi: 10.4064/fm171-2-4
Cité par Sources :