The splitting number can be smaller than the matrix chaos number
Fundamenta Mathematicae, Tome 171 (2002) no. 2, pp. 167-176.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\chi $ be the minimum cardinality of a subset of ${}^\omega 2$ that cannot be made convergent by multiplication with a single Toeplitz matrix. By an application of a creature forcing we show that ${\frak s} \chi $ is consistent. We thus answer a question by Vojtáš. We give two kinds of models for the strict inequality. The first is the combination of an $\aleph _2$-iteration of some proper forcing with adding $\aleph _1$ random reals. The second kind of models is obtained by adding $\delta $ random reals to a model of $ {\rm MA}_{\kappa }$ for some $\delta \in [\aleph _1,\kappa )$. It was a conjecture of Blass that ${\frak s}=\aleph _1 \chi = \kappa $ holds in such a model. For the analysis of the second model we again use the creature forcing from the first model.
DOI : 10.4064/fm171-2-4
Keywords: chi minimum cardinality subset omega cannot made convergent multiplication single toeplitz matrix application creature forcing frak chi consistent answer question vojt kinds models strict inequality first combination aleph iteration proper forcing adding aleph random reals second kind models obtained adding delta random reals model kappa delta aleph kappa conjecture blass frak aleph chi kappa holds model analysis second model again creature forcing first model

Heike Mildenberger 1 ; Saharon Shelah 2

1 Institut für formale Logik Universität Wien Währinger Str. 25 A-1090 Vienna, Austria
2 Institute of Mathematics The Hebrew University of Jerusalem Givat Ram 91904 Jerusalem, Israel
@article{10_4064_fm171_2_4,
     author = {Heike Mildenberger and Saharon Shelah},
     title = {The splitting number can be smaller than the
matrix chaos number},
     journal = {Fundamenta Mathematicae},
     pages = {167--176},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2002},
     doi = {10.4064/fm171-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-4/}
}
TY  - JOUR
AU  - Heike Mildenberger
AU  - Saharon Shelah
TI  - The splitting number can be smaller than the
matrix chaos number
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 167
EP  - 176
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-4/
DO  - 10.4064/fm171-2-4
LA  - en
ID  - 10_4064_fm171_2_4
ER  - 
%0 Journal Article
%A Heike Mildenberger
%A Saharon Shelah
%T The splitting number can be smaller than the
matrix chaos number
%J Fundamenta Mathematicae
%D 2002
%P 167-176
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-4/
%R 10.4064/fm171-2-4
%G en
%F 10_4064_fm171_2_4
Heike Mildenberger; Saharon Shelah. The splitting number can be smaller than the
matrix chaos number. Fundamenta Mathematicae, Tome 171 (2002) no. 2, pp. 167-176. doi : 10.4064/fm171-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-4/

Cité par Sources :