Continuous pseudo-hairy spaces and continuous pseudo-fans
Fundamenta Mathematicae, Tome 171 (2002) no. 2, pp. 101-116.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A compact metric space $\widetilde{X} $ is said to be a continuous pseudo-hairy space over a compact space $X\subset \widetilde{X} $ provided there exists an open, monotone retraction $r: \widetilde{X} \buildrel {\rm onto}\over\longrightarrow X $ such that all fibers $r^{-1}(x)$ are pseudo-arcs and any continuum in $\widetilde{X}$ joining two different fibers of $r$ intersects $X$. A continuum $Y_{X}$ is called a {\it continuous pseudo-fan of} a compactum $X$ if there are a point $c\in Y_{X}$ and a family ${\cal F}$ of pseudo-arcs such that $\bigcup {\cal F} = Y_{X} $, any subcontinuum of $Y_{X}$ intersecting two different elements of ${\cal F}$ contains $c$, and ${\cal F}$ is homeomorphic to $X$ (with respect to the Hausdorff metric). It is proved that for each compact metric space $X$ there exist a continuous pseudo-hairy space over $X$ and a continuous pseudo-fan of $X$.
DOI : 10.4064/fm171-2-1
Keywords: compact metric space widetilde said continuous pseudo hairy space compact space subset widetilde provided there exists monotone retraction widetilde buildrel longrightarrow fibers pseudo arcs continuum widetilde joining different fibers intersects nbsp continuum called continuous pseudo fan compactum there point family cal pseudo arcs bigcup cal subcontinuum intersecting different elements cal contains cal homeomorphic respect hausdorff metric proved each compact metric space there exist continuous pseudo hairy space continuous pseudo fan nbsp

Janusz R. Prajs 1

1 Institute of Mathematics Opole University Oleska 48 45-052 Opole, Poland Current address Department of Mathematics Idaho State University Pocatello, ID 83209, U.S.A.
@article{10_4064_fm171_2_1,
     author = {Janusz R. Prajs},
     title = {Continuous pseudo-hairy spaces and
continuous pseudo-fans},
     journal = {Fundamenta Mathematicae},
     pages = {101--116},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2002},
     doi = {10.4064/fm171-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-1/}
}
TY  - JOUR
AU  - Janusz R. Prajs
TI  - Continuous pseudo-hairy spaces and
continuous pseudo-fans
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 101
EP  - 116
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-1/
DO  - 10.4064/fm171-2-1
LA  - en
ID  - 10_4064_fm171_2_1
ER  - 
%0 Journal Article
%A Janusz R. Prajs
%T Continuous pseudo-hairy spaces and
continuous pseudo-fans
%J Fundamenta Mathematicae
%D 2002
%P 101-116
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-1/
%R 10.4064/fm171-2-1
%G en
%F 10_4064_fm171_2_1
Janusz R. Prajs. Continuous pseudo-hairy spaces and
continuous pseudo-fans. Fundamenta Mathematicae, Tome 171 (2002) no. 2, pp. 101-116. doi : 10.4064/fm171-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm171-2-1/

Cité par Sources :