The power set of $\omega $ Elementary submodels and weakenings of CH
Fundamenta Mathematicae, Tome 170 (2001) no. 3, pp. 257-265.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define a new principle, $\mathop {\rm SEP}\nolimits $, which is true in all Cohen extensions of models of $\mathop {\rm CH}\nolimits $, and explore the relationship between $\mathop {\rm SEP}\nolimits $ and other such principles. $\mathop {\rm SEP}\nolimits $ is implied by each of $\mathop {\rm CH}\nolimits ^*$, the weak Freeze–Nation property of ${\cal P}(\omega )$, and the $(\aleph _1,\aleph _0)$-ideal property. $\mathop {\rm SEP}\nolimits $ implies the principle ${\rm C}_2^{\rm s}(\omega _2)$, but does not follow from ${\rm C}_2^{\rm s}(\omega _2)$, or even ${\rm C}^{\rm s}(\omega _2)$.
DOI : 10.4064/fm170-3-4
Keywords: define principle mathop sep nolimits which cohen extensions models mathop nolimits explore relationship between mathop sep nolimits other principles mathop sep nolimits implied each mathop nolimits * weak freeze nation property cal omega aleph aleph ideal property mathop sep nolimits implies principle omega does follow omega even omega

István Juhász 1 ; Kenneth Kunen 2

1 Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences P.O. Box 127 H-1364 Budapest, Hungary
2 Department of Mathematics University of Wisconsin Madison, WI 53706, U.S.A.
@article{10_4064_fm170_3_4,
     author = {Istv\'an Juh\'asz and Kenneth Kunen},
     title = {The power set of $\omega ${
Elementary} submodels and weakenings of {CH}},
     journal = {Fundamenta Mathematicae},
     pages = {257--265},
     publisher = {mathdoc},
     volume = {170},
     number = {3},
     year = {2001},
     doi = {10.4064/fm170-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm170-3-4/}
}
TY  - JOUR
AU  - István Juhász
AU  - Kenneth Kunen
TI  - The power set of $\omega $
Elementary submodels and weakenings of CH
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 257
EP  - 265
VL  - 170
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm170-3-4/
DO  - 10.4064/fm170-3-4
LA  - en
ID  - 10_4064_fm170_3_4
ER  - 
%0 Journal Article
%A István Juhász
%A Kenneth Kunen
%T The power set of $\omega $
Elementary submodels and weakenings of CH
%J Fundamenta Mathematicae
%D 2001
%P 257-265
%V 170
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm170-3-4/
%R 10.4064/fm170-3-4
%G en
%F 10_4064_fm170_3_4
István Juhász; Kenneth Kunen. The power set of $\omega $
Elementary submodels and weakenings of CH. Fundamenta Mathematicae, Tome 170 (2001) no. 3, pp. 257-265. doi : 10.4064/fm170-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm170-3-4/

Cité par Sources :