The power set of $\omega $
Elementary submodels and weakenings of CH
Fundamenta Mathematicae, Tome 170 (2001) no. 3, pp. 257-265
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define a new principle, $\mathop {\rm SEP}\nolimits $,
which is true in all Cohen extensions of models of $\mathop {\rm
CH}\nolimits $, and explore the relationship between $\mathop
{\rm SEP}\nolimits $ and other such principles. $\mathop {\rm
SEP}\nolimits $ is implied by each of $\mathop {\rm CH}\nolimits
^*$, the weak Freeze–Nation property of ${\cal P}(\omega )$,
and the $(\aleph _1,\aleph _0)$-ideal property. $\mathop {\rm
SEP}\nolimits $ implies the principle ${\rm C}_2^{\rm s}(\omega
_2)$, but does not follow from ${\rm C}_2^{\rm s}(\omega _2)$,
or even ${\rm C}^{\rm s}(\omega _2)$.
Keywords:
define principle mathop sep nolimits which cohen extensions models mathop nolimits explore relationship between mathop sep nolimits other principles mathop sep nolimits implied each mathop nolimits * weak freeze nation property cal omega aleph aleph ideal property mathop sep nolimits implies principle omega does follow omega even omega
Affiliations des auteurs :
István Juhász 1 ; Kenneth Kunen 2
@article{10_4064_fm170_3_4,
author = {Istv\'an Juh\'asz and Kenneth Kunen},
title = {The power set of $\omega ${
Elementary} submodels and weakenings of {CH}},
journal = {Fundamenta Mathematicae},
pages = {257--265},
publisher = {mathdoc},
volume = {170},
number = {3},
year = {2001},
doi = {10.4064/fm170-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm170-3-4/}
}
TY - JOUR AU - István Juhász AU - Kenneth Kunen TI - The power set of $\omega $ Elementary submodels and weakenings of CH JO - Fundamenta Mathematicae PY - 2001 SP - 257 EP - 265 VL - 170 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm170-3-4/ DO - 10.4064/fm170-3-4 LA - en ID - 10_4064_fm170_3_4 ER -
István Juhász; Kenneth Kunen. The power set of $\omega $ Elementary submodels and weakenings of CH. Fundamenta Mathematicae, Tome 170 (2001) no. 3, pp. 257-265. doi: 10.4064/fm170-3-4
Cité par Sources :