Recent developments in the theory of Borel reducibility
Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 21-52
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $E_0$ be the Vitali equivalence relation and $E_3$ the
product of countably many copies of $E_0$. Two new dichotomy
theorems for Borel equivalence relations are proved. First, for
any Borel equivalence relation $E$ that is (Borel) reducible to
$E_3$, either $E$ is reducible to $E_0$ or else $E_3$ is
reducible to $E$. Second, if $E$ is a Borel equivalence relation
induced by a Borel action of a closed subgroup of the infinite
symmetric group that admits an invariant metric, then either $E$
is reducible to a countable Borel equivalence relation or else
$E_3$ is reducible to $E$.
We also survey a number of
results and conjectures concerning the global structure of
reducibility on Borel equivalence relations.
Keywords:
vitali equivalence relation product countably many copies dichotomy theorems borel equivalence relations proved first borel equivalence relation borel reducible either reducible else reducible second borel equivalence relation induced borel action closed subgroup infinite symmetric group admits invariant metric either reducible countable borel equivalence relation else reducible survey number results conjectures concerning global structure reducibility borel equivalence relations
Affiliations des auteurs :
Greg Hjorth 1 ; Alexander S. Kechris 2
@article{10_4064_fm170_1_2,
author = {Greg Hjorth and Alexander S. Kechris},
title = {Recent developments in the theory of {Borel} reducibility},
journal = {Fundamenta Mathematicae},
pages = {21--52},
publisher = {mathdoc},
volume = {170},
number = {1},
year = {2001},
doi = {10.4064/fm170-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-2/}
}
TY - JOUR AU - Greg Hjorth AU - Alexander S. Kechris TI - Recent developments in the theory of Borel reducibility JO - Fundamenta Mathematicae PY - 2001 SP - 21 EP - 52 VL - 170 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-2/ DO - 10.4064/fm170-1-2 LA - en ID - 10_4064_fm170_1_2 ER -
Greg Hjorth; Alexander S. Kechris. Recent developments in the theory of Borel reducibility. Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 21-52. doi: 10.4064/fm170-1-2
Cité par Sources :