$G$-functors, $G$-posets and homotopy decompositions of $G$-spaces
Fundamenta Mathematicae, Tome 169 (2001) no. 3, pp. 249-287.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We describe a unifying approach to a variety of homotopy decompositions of classifying spaces, mainly of finite groups. For a group $G$ acting on a poset ${\bf W}$ and an isotropy presheaf $d:{\bf W}\rightarrow {\cal S}(G)$ we construct a natural $G$-map $ \mathop {\rm hocolim}\nolimits _{{\cal W}_d}G/d(-)\rightarrow |{\bf W}|$ which is a (non-equivariant) homotopy equivalence, hence $ \mathop {\rm hocolim}\nolimits _{{\cal W}_d}EG\times _GF_d \rightarrow EG\times _G|{\bf W}|$ is a homotopy equivalence. Different choices of $G$-posets and isotropy presheaves on them lead to homotopy decompositions of classifying spaces. We analyze higher limits over the categories associated to isotropy presheaves ${\cal W}_d$; in some important cases they vanish in dimensions greater than the length of ${\bf W}$ and can be explicitly calculated in low dimensions. We prove a cofinality theorem for functors $F:{\cal C}\rightarrow {\cal O}(G)$ into the category of $G$-orbits which guarantees that the associated map $\alpha _F:\mathop {\rm hocolim}\nolimits _{{\cal C}}EG\times _G F(-)\rightarrow BG$ is a mod-$p$-homology decomposition.
DOI : 10.4064/fm169-3-4
Keywords: describe unifying approach variety homotopy decompositions classifying spaces mainly finite groups group acting poset isotropy presheaf rightarrow cal construct natural g map mathop hocolim nolimits cal rightarrow which non equivariant homotopy equivalence hence mathop hocolim nolimits cal times rightarrow times homotopy equivalence different choices g posets isotropy presheaves lead homotopy decompositions classifying spaces analyze higher limits categories associated isotropy presheaves cal important cases vanish dimensions greater length explicitly calculated low dimensions prove cofinality theorem functors cal rightarrow cal category g orbits which guarantees associated map alpha mathop hocolim nolimits cal times rightarrow mod p homology decomposition

Stefan Jackowski 1 ; Jolanta Słomińska 2

1 Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
2 Faculty of Mathematics and Information Sciences Warsaw Technical University Pl. Politechniki 1 00-661 Warszawa, Poland
@article{10_4064_fm169_3_4,
     author = {Stefan Jackowski and Jolanta S{\l}omi\'nska},
     title = {$G$-functors, $G$-posets and
homotopy decompositions of $G$-spaces},
     journal = {Fundamenta Mathematicae},
     pages = {249--287},
     publisher = {mathdoc},
     volume = {169},
     number = {3},
     year = {2001},
     doi = {10.4064/fm169-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-3-4/}
}
TY  - JOUR
AU  - Stefan Jackowski
AU  - Jolanta Słomińska
TI  - $G$-functors, $G$-posets and
homotopy decompositions of $G$-spaces
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 249
EP  - 287
VL  - 169
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm169-3-4/
DO  - 10.4064/fm169-3-4
LA  - en
ID  - 10_4064_fm169_3_4
ER  - 
%0 Journal Article
%A Stefan Jackowski
%A Jolanta Słomińska
%T $G$-functors, $G$-posets and
homotopy decompositions of $G$-spaces
%J Fundamenta Mathematicae
%D 2001
%P 249-287
%V 169
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm169-3-4/
%R 10.4064/fm169-3-4
%G en
%F 10_4064_fm169_3_4
Stefan Jackowski; Jolanta Słomińska. $G$-functors, $G$-posets and
homotopy decompositions of $G$-spaces. Fundamenta Mathematicae, Tome 169 (2001) no. 3, pp. 249-287. doi : 10.4064/fm169-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm169-3-4/

Cité par Sources :