$G$-functors, $G$-posets and
homotopy decompositions of $G$-spaces
Fundamenta Mathematicae, Tome 169 (2001) no. 3, pp. 249-287
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe a unifying approach to a variety of homotopy
decompositions of classifying spaces, mainly of finite groups.
For a group $G$ acting on a poset ${\bf W}$ and an isotropy
presheaf $d:{\bf W}\rightarrow {\cal S}(G)$ we construct a
natural $G$-map $ \mathop {\rm hocolim}\nolimits _{{\cal
W}_d}G/d(-)\rightarrow |{\bf W}|$ which is a (non-equivariant)
homotopy equivalence, hence $ \mathop {\rm hocolim}\nolimits
_{{\cal W}_d}EG\times _GF_d \rightarrow EG\times _G|{\bf W}|$ is
a homotopy equivalence. Different choices of $G$-posets and
isotropy presheaves on them lead to homotopy decompositions of
classifying spaces. We analyze higher limits over the categories
associated to isotropy presheaves ${\cal W}_d$; in some
important cases they vanish in dimensions greater than the
length of ${\bf W}$ and can be explicitly calculated in low
dimensions. We prove a cofinality theorem for functors $F:{\cal
C}\rightarrow {\cal O}(G)$ into the category of $G$-orbits which
guarantees that the associated map $\alpha _F:\mathop {\rm
hocolim}\nolimits _{{\cal C}}EG\times _G F(-)\rightarrow BG$ is
a mod-$p$-homology decomposition.
Keywords:
describe unifying approach variety homotopy decompositions classifying spaces mainly finite groups group acting poset isotropy presheaf rightarrow cal construct natural g map mathop hocolim nolimits cal rightarrow which non equivariant homotopy equivalence hence mathop hocolim nolimits cal times rightarrow times homotopy equivalence different choices g posets isotropy presheaves lead homotopy decompositions classifying spaces analyze higher limits categories associated isotropy presheaves cal important cases vanish dimensions greater length explicitly calculated low dimensions prove cofinality theorem functors cal rightarrow cal category g orbits which guarantees associated map alpha mathop hocolim nolimits cal times rightarrow mod p homology decomposition
Affiliations des auteurs :
Stefan Jackowski 1 ; Jolanta Słomińska 2
@article{10_4064_fm169_3_4,
author = {Stefan Jackowski and Jolanta S{\l}omi\'nska},
title = {$G$-functors, $G$-posets and
homotopy decompositions of $G$-spaces},
journal = {Fundamenta Mathematicae},
pages = {249--287},
publisher = {mathdoc},
volume = {169},
number = {3},
year = {2001},
doi = {10.4064/fm169-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-3-4/}
}
TY - JOUR AU - Stefan Jackowski AU - Jolanta Słomińska TI - $G$-functors, $G$-posets and homotopy decompositions of $G$-spaces JO - Fundamenta Mathematicae PY - 2001 SP - 249 EP - 287 VL - 169 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm169-3-4/ DO - 10.4064/fm169-3-4 LA - en ID - 10_4064_fm169_3_4 ER -
%0 Journal Article %A Stefan Jackowski %A Jolanta Słomińska %T $G$-functors, $G$-posets and homotopy decompositions of $G$-spaces %J Fundamenta Mathematicae %D 2001 %P 249-287 %V 169 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm169-3-4/ %R 10.4064/fm169-3-4 %G en %F 10_4064_fm169_3_4
Stefan Jackowski; Jolanta Słomińska. $G$-functors, $G$-posets and homotopy decompositions of $G$-spaces. Fundamenta Mathematicae, Tome 169 (2001) no. 3, pp. 249-287. doi: 10.4064/fm169-3-4
Cité par Sources :