Forcing relation on minimal interval patterns
Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 161-173.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\cal M}$ be the set of pairs $(T,g)$ such that $T\subset {\mathbb R}$ is compact, $g: T\to T$ is continuous, $g$ is minimal on $T$ and has a piecewise monotone extension to $\mathop {\rm conv}\nolimits T$. Two pairs $(T,g),(S,f)$ from ${\cal M}$ are equivalent if the map $h:\mathop {\rm orb}\nolimits (\mathop {\rm min}T,g)\to \mathop {\rm orb}\nolimits (\mathop {\rm min}S,f)$ defined for each $m\in {\mathbb N}_0$ by $h(g^m(\mathop {\rm min}T))=f^m(\mathop {\rm min}S)$ is increasing on $\mathop {\rm orb}\nolimits (\mathop {\rm min}T,g)$. An equivalence class of this relation—a minimal (oriented) pattern $A$—is exhibited by a continuous interval map $f:I\to I$ if there is a set $T\subset I$ such that $(T,f|T)=(T,f)\in A$. We define the forcing relation on minimal patterns: $A$ forces $B$ if all continuous interval maps exhibiting $A$ also exhibit $B$. In Theorem 3.1 we show that for each minimal pattern $A$ there are maps exhibiting only patterns forced by $A$. Using this result we prove that the forcing relation on minimal patterns is a partial ordering. Our Theorem 3.2 extends the result of [B], where pairs $(T,g)$ with $T$ finite are considered.
DOI : 10.4064/fm169-2-5
Keywords: cal set pairs subset mathbb compact continuous minimal has piecewise monotone extension mathop conv nolimits pairs cal equivalent map mathop orb nolimits mathop min mathop orb nolimits mathop min defined each mathbb mathop min mathop min increasing mathop orb nolimits mathop min equivalence class relation minimal oriented pattern exhibited continuous interval map there set subset define forcing relation minimal patterns forces continuous interval maps exhibiting exhibit theorem each minimal pattern there maps exhibiting only patterns forced using result prove forcing relation minimal patterns partial ordering theorem extends result where pairs finite considered

Jozef Bobok 1

1 KM FSv. ČVUT Thákurova 7 166 29 Praha 6, Czech Republic
@article{10_4064_fm169_2_5,
     author = {Jozef Bobok},
     title = {Forcing relation on minimal interval patterns},
     journal = {Fundamenta Mathematicae},
     pages = {161--173},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2001},
     doi = {10.4064/fm169-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-5/}
}
TY  - JOUR
AU  - Jozef Bobok
TI  - Forcing relation on minimal interval patterns
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 161
EP  - 173
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-5/
DO  - 10.4064/fm169-2-5
LA  - en
ID  - 10_4064_fm169_2_5
ER  - 
%0 Journal Article
%A Jozef Bobok
%T Forcing relation on minimal interval patterns
%J Fundamenta Mathematicae
%D 2001
%P 161-173
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-5/
%R 10.4064/fm169-2-5
%G en
%F 10_4064_fm169_2_5
Jozef Bobok. Forcing relation on minimal interval patterns. Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 161-173. doi : 10.4064/fm169-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-5/

Cité par Sources :