On the number of countable models of stable theories
Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 139-144.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove: Theorem. If $T$ is a countable, complete, stable, first-order theory having an infinite set of constants with different interpretations, then $I(T,\aleph _{0}) \ge \aleph _{0}$.
DOI : 10.4064/fm169-2-3
Keywords: prove theorem countable complete stable first order theory having infinite set constants different interpretations aleph aleph

Predrag Tanović 1

1 Matematički institut SANU Knez Mihajlova 35 11001 Beograd, Serbia, Yugoslavia
@article{10_4064_fm169_2_3,
     author = {Predrag Tanovi\'c},
     title = {On the number of countable models of stable theories},
     journal = {Fundamenta Mathematicae},
     pages = {139--144},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2001},
     doi = {10.4064/fm169-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-3/}
}
TY  - JOUR
AU  - Predrag Tanović
TI  - On the number of countable models of stable theories
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 139
EP  - 144
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-3/
DO  - 10.4064/fm169-2-3
LA  - en
ID  - 10_4064_fm169_2_3
ER  - 
%0 Journal Article
%A Predrag Tanović
%T On the number of countable models of stable theories
%J Fundamenta Mathematicae
%D 2001
%P 139-144
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-3/
%R 10.4064/fm169-2-3
%G en
%F 10_4064_fm169_2_3
Predrag Tanović. On the number of countable models of stable theories. Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 139-144. doi : 10.4064/fm169-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-3/

Cité par Sources :