On the number of countable models of stable theories
Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 139-144
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove:
Theorem. If $T$ is a countable,
complete, stable, first-order theory having an infinite set of
constants with different interpretations, then $I(T,\aleph _{0})
\ge \aleph _{0}$.
Keywords:
prove theorem countable complete stable first order theory having infinite set constants different interpretations aleph aleph
Affiliations des auteurs :
Predrag Tanović 1
@article{10_4064_fm169_2_3,
author = {Predrag Tanovi\'c},
title = {On the number of countable models of stable theories},
journal = {Fundamenta Mathematicae},
pages = {139--144},
publisher = {mathdoc},
volume = {169},
number = {2},
year = {2001},
doi = {10.4064/fm169-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-3/}
}
Predrag Tanović. On the number of countable models of stable theories. Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 139-144. doi: 10.4064/fm169-2-3
Cité par Sources :