Stable derived functors, the Steenrod algebra andhomological algebra in the category of functors
Fundamenta Mathematicae, Tome 168 (2001) no. 3, pp. 279-293.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a very short way of calculating additively the stable (co)homology of Eilenberg–MacLane spaces $K({\mathbb Z}/p,n)$. Our method depends only on homological algebra in appropriate categories of functors.
DOI : 10.4064/fm168-3-4
Keywords: present short calculating additively stable homology eilenberg maclane spaces mathbb method depends only homological algebra appropriate categories functors

Stanisław Betley 1

1 Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_fm168_3_4,
     author = {Stanis{\l}aw Betley},
     title = {Stable derived functors, the {Steenrod} algebra andhomological algebra in the category of functors},
     journal = {Fundamenta Mathematicae},
     pages = {279--293},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2001},
     doi = {10.4064/fm168-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-3-4/}
}
TY  - JOUR
AU  - Stanisław Betley
TI  - Stable derived functors, the Steenrod algebra andhomological algebra in the category of functors
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 279
EP  - 293
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm168-3-4/
DO  - 10.4064/fm168-3-4
LA  - en
ID  - 10_4064_fm168_3_4
ER  - 
%0 Journal Article
%A Stanisław Betley
%T Stable derived functors, the Steenrod algebra andhomological algebra in the category of functors
%J Fundamenta Mathematicae
%D 2001
%P 279-293
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm168-3-4/
%R 10.4064/fm168-3-4
%G en
%F 10_4064_fm168_3_4
Stanisław Betley. Stable derived functors, the Steenrod algebra andhomological algebra in the category of functors. Fundamenta Mathematicae, Tome 168 (2001) no. 3, pp. 279-293. doi : 10.4064/fm168-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm168-3-4/

Cité par Sources :